Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 202(2): 309-322, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31659382

RESUMO

In northern Mexico, aridity, salinity and high temperatures limit areas that can be cultivated. To investigate the nature of nitrogen-fixing symbionts of Phaseolus filiformis, an adapted wild bean species native to this region, their phylogenies were inferred by MLSA. Most rhizobia recovered belong to the proposed new species Ensifer aridi. Phylogenetic analyses of nodC and nifH show that Mexican isolates carry symbiotic genes acquired through horizontal gene transfer that are divergent from those previously characterized among bean symbionts. These strains are salt tolerant, able to grow in alkaline conditions, high temperatures, and capable of utilizing a wide range of carbohydrates and organic acids as carbon sources for growth. This study improves the knowledge on diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico and further enlarges the spectrum of microsymbiont with which Phaseolus species can interact with, including cultivated bean varieties, notably under stressed environments. Here, the species Ensifer aridi sp. nov. is proposed as strain type of the Moroccan isolate LMR001T (= LMG 31426T; = HAMBI 3707T) recovered from desert sand dune.


Assuntos
Phaseolus/metabolismo , Rhizobiaceae/classificação , Rhizobiaceae/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , DNA Bacteriano/genética , Temperatura Alta , México , Phaseolus/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Tolerância ao Sal/genética , Areia , Análise de Sequência de DNA , Simbiose
2.
Mycorrhiza ; 25(7): 547-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25711744

RESUMO

We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.


Assuntos
Microbiota , Micorrizas/fisiologia , Polygonaceae/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/fisiologia , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/fisiologia , Florestas , Genes Fúngicos , Guadalupe , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Plântula/microbiologia , Análise de Sequência de DNA , Árvores/microbiologia
3.
PLoS One ; 8(5): e63478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691052

RESUMO

Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the "Piptadenia group". We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from ß to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species.


Assuntos
Burkholderia/isolamento & purificação , Fabaceae/microbiologia , Simbiose , Brasil , Burkholderia/classificação , Filogenia
4.
FEMS Microbiol Ecol ; 79(2): 487-503, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22093060

RESUMO

The genetic diversity of 221 Mimosa pudica bacterial symbionts trapped from eight soils from diverse environments in French Guiana was assessed by 16S rRNA PCR-RFLP, REP-PCR fingerprints, as well as by phylogenies of their 16S rRNA and recA housekeeping genes, and by their nifH, nodA and nodC symbiotic genes. Interestingly, we found a large diversity of beta-rhizobia, with Burkholderia phymatum and Burkholderia tuberum being the most frequent and diverse symbiotic species. Other species were also found, such as Burkholderia mimosarum, an unnamed Burkholderia species and, for the first time in South America, Cupriavidus taiwanensis. The sampling site had a strong influence on the diversity of the symbionts sampled, and the specific distributions of symbiotic populations between the soils were related to soil composition in some cases. Some alpha-rhizobial strains taxonomically close to Rhizobium endophyticum were also trapped in one soil, and these carried two copies of the nodA gene, a feature not previously reported. Phylogenies of nodA, nodC and nifH genes showed a monophyly of symbiotic genes for beta-rhizobia isolated from Mimosa spp., indicative of a long history of interaction between beta-rhizobia and Mimosa species. Based on their symbiotic gene phylogenies and legume hosts, B. tuberum was shown to contain two large biovars: one specific to the mimosoid genus Mimosa and one to South African papilionoid legumes.


Assuntos
Burkholderia/genética , Mimosa/microbiologia , Sequência de Bases , Burkholderia/classificação , Burkholderia/isolamento & purificação , Cupriavidus/classificação , Cupriavidus/crescimento & desenvolvimento , Guiana Francesa , Variação Genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Solo , América do Sul , Simbiose
5.
Environ Microbiol ; 12(8): 2152-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966910

RESUMO

Tropical aquatic legumes of the genus Aeschynomene are unique in that they can be stem-nodulated by photosynthetic bradyrhizobia. Moreover, a recent study demonstrated that two Aeschynomene indica symbionts lack canonical nod genes, thereby raising questions about the distribution of such atypical symbioses among rhizobial-legume interactions. Population structure and genomic diversity were compared among stem-nodulating bradyrhizobia isolated from various Aeschynomene species of Central America and Tropical Africa. Phylogenetic analyses based on the recA gene and whole-genome amplified fragment length polymorphism (AFLP) fingerprints on 110 bacterial strains highlighted that all the photosynthetic strains form a separate cluster among bradyrhizobia, with no obvious structuring according to their geographical or plant origins. Nod-independent symbiosis was present in all sampling areas and seemed to be linked to Aeschynomene host species. However, it was not strictly dependent on photosynthetic ability, as exemplified by a newly identified cluster of strains that lacked canonical nod genes and efficiently stem-nodulated A. indica, but were not photosynthetic. Interestingly, the phenotypic properties of this new cluster of bacteria were reflected by their phylogenetical position, as being intermediate in distance between classical root-nodulatingBradyrhizobium spp. and photosynthetic ones. This result opens new prospects about stem-nodulating bradyrhizobial evolution.


Assuntos
Bradyrhizobiaceae/classificação , Fabaceae/microbiologia , Filogenia , Caules de Planta/microbiologia , Simbiose , África , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Evolução Biológica , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/fisiologia , América Central , DNA Bacteriano/genética , Genoma Bacteriano , Dados de Sequência Molecular , Fenótipo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA