Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770104

RESUMO

This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5-30 µm with the formation of isolated and intergranular holes.

2.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408007

RESUMO

Geopolymer materials are used as construction materials due to their lower carbon dioxide (CO2) emissions compared with conventional cementitious materials. An example of a geopolymer material is alkali-activated kaolin, which is a viable alternative for producing high-strength ceramics. Producing high-performing kaolin ceramics using the conventional method requires a high processing temperature (over 1200 °C). However, properties such as pore size and distribution are affected at high sintering temperatures. Therefore, knowledge regarding the sintering process and related pore structures on alkali-activated kaolin geopolymer ceramic is crucial for optimizing the properties of the aforementioned materials. Pore size was analyzed using neutron tomography, while pore distribution was observed using synchrotron micro-XRF. This study elucidated the pore structure of alkali-activated kaolin at various sintering temperatures. The experiments showed the presence of open pores and closed pores in alkali-activated kaolin geopolymer ceramic samples. The distributions of the main elements within the geopolymer ceramic edifice were found with Si and Al maps, allowing for the identification of the kaolin geopolymer. The results also confirmed that increasing the sintering temperature to 1100 °C resulted in the alkali-activated kaolin geopolymer ceramic samples having large pores, with an average size of ~80 µm3 and a layered porosity distribution.

3.
Materials (Basel) ; 14(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576358

RESUMO

This manuscript reports the isothermal annealing effect on the mechanical and microstructure characteristics of Sn-0.7Cu-1.5Bi solder joints. A detailed microstructure observation was carried out, including measuring the activation energy of the intermetallic compound (IMC) layer of the solder joints. Additionally, the synchrotron µX-ray fluorescence (XRF) method was adopted to precisely explore the elemental distribution in the joints. Results indicated that the Cu6Sn5 and Cu3Sn intermetallic layers thickness at the solder/Cu interface rises with annealing time at a rate of 0.042 µm/h for Sn-0.7Cu and 0.037 µm/h for Sn-0.7Cu-1.5Bi. The IMC growth's activation energy during annealing is 48.96 kJ mol-1 for Sn-0.7Cu, while adding Bi into Sn-0.7Cu solder increased the activation energy to 55.76 kJ mol-1. The µ-XRF shows a lower Cu concentration level in Sn-0.7Cu-1.5Bi, where the Bi element was well dispersed in the ß-Sn area as a result of the solid solution mechanism. The shape of the IMC layer also reconstructs from a scallop shape to a planar shape after the annealing process. The Sn-0.7Cu hardness and shear strength increased significantly with 1.5 wt.% Bi addition in reflowed and after isothermal annealing conditions.

4.
Materials (Basel) ; 14(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925777

RESUMO

This paper clarified the microstructural element distribution and electrical conductivity changes of kaolin, fly ash, and slag geopolymer at 900 °C. The surface microstructure analysis showed the development in surface densification within the geopolymer when in contact with sintering temperature. It was found that the electrical conductivity was majorly influenced by the existence of the crystalline phase within the geopolymer sample. The highest electrical conductivity (8.3 × 10-4 Ωm-1) was delivered by slag geopolymer due to the crystalline mineral of gehlenite (3Ca2Al2SiO7). Using synchrotron radiation X-ray fluorescence, the high concentration Ca boundaries revealed the appearance of gehlenite crystallisation, which was believed to contribute to development of denser microstructure and electrical conductivity.

5.
Materials (Basel) ; 14(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669116

RESUMO

The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm-1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.

6.
Materials (Basel) ; 14(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562471

RESUMO

The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint.

7.
Materials (Basel) ; 13(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102345

RESUMO

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.

8.
Sci Total Environ ; 713: 136708, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019044

RESUMO

Consumption of water containing high proportions of manganese could cause Parkinson's like symptoms and damage the central nervous systems. This study aims to investigate the potential of manganese removal through the development of microbial cell-immobilized biochar. The wood vinegar industry generates a large volume of carbonized wood waste (natural biochar) from the pyrolytic process. This is the first investigation utilizing this low value waste combined with biological treatment for water purification. Raw and hydrogen peroxide-modified biochars were used to immobilize an effective manganese-oxidizing bacterium, Streptomyces violarus strain SBP1 (SBP1). The results demonstrated that the modified biochar had a higher proportion of oxygen-containing functional groups leading to better manganese removal. Manganese adsorption by the modified biochar fitted pseudo-second-order and Langmuir models with the maximum adsorption capacity of 1.15 mg g-1. The modified biochar with SBP1 provided the highest removal efficiency at 78%. The advanced synchrotron analyses demonstrated that manganese removal by the biochar with SBP1 is due to the synergistic combination of manganese adsorption by biochars and biological oxidation by SBP1.


Assuntos
Streptomyces , Adsorção , Biotransformação , Carvão Vegetal , Manganês , Poluentes Químicos da Água
9.
J Am Chem Soc ; 138(18): 5757-60, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27101731

RESUMO

We report a columnar superlattice formed by blends of dendron-like Li 3,4,5-tris(n-alkoxy)benzoates with n-alkanes. Without the alkane, the wedge-shaped molecules form liquid crystal columns with 3 dendrons in a supramolecular disk. The same structure exists in the blend, but on heating one dendron is expelled from the disks in every third column and is replaced by the alkane. This superlattice of unequal columns is confirmed by complementary X-ray and neutron diffraction studies. Lateral thermal expansion of dendrons normally leads to the expulsion of excess molecules from the column, reducing the column diameter. However, in the already narrow columns of pure Li salt, expulsion of one of only three dendrons in a disk is not viable. The added alkane facilitates the expulsion, as it replaces the missing dendron. Replacing the alkane with a functional compound can potentially lead to active nanoarrays with relatively large periodicity by using only small molecules.

10.
J Chem Phys ; 141(8): 085101, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25173043

RESUMO

Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10(-2)-10(6) Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.


Assuntos
Glicolipídeos/química , Cristais Líquidos/química , Transição de Fase , Espectroscopia Dielétrica , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...