Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 453: 139693, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781906

RESUMO

Canola protein obtained from canola meal, a byproduct of the canola industry, is an economical biopolymer with promising film-forming properties. It has significant potential for use as a food packaging material, though it possesses some functional limitations that need improvement. Incorporating nanomaterials is an option to enhance functional properties. This study aims to produce canola protein films by integrating GO exfoliated at several oxidation times and weight ratios to optimize mechanical, thermal, and barrier properties. Oxidation alters the C/O ratio and adds functional groups that bond with the amino/carboxyl groups of protein, enhancing the film properties. Significant improvement was obtained in GO at 60 and 120 min oxidation time and 3% addition level. Tensile strength and elastic modulus increased 200% and 481.72%, respectively, compared to control. Control films showed a 37.57 × 10-3 cm3m/m2/day/Pa oxygen permeability, and it was significantly reduced to 5.65 × 10-3 cm3m/m2/day/Pa representing a 665% reduction.


Assuntos
Embalagem de Alimentos , Grafite , Nanopartículas , Proteínas de Plantas , Resistência à Tração , Embalagem de Alimentos/instrumentação , Grafite/química , Nanopartículas/química , Proteínas de Plantas/química , Brassica napus/química , Permeabilidade , Oxirredução
2.
Heliyon ; 9(11): e21938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027992

RESUMO

Canola (Brassica napus L.) meal represents a prominent alternative plant-based source for protein isolation. This work aimed to investigate the combined effect of extraction and purification methods for the production of canola protein isolates (CPIs). CPIs were characterized in terms of process yield, protein recovery, basic composition, amino acid profile, in vitro protein digestibility, techno-functional properties, structural properties, and molecular features. The results showed that the Alk-Uf method enhanced yield (16.23 %) and protein recovery (34.88 %). Meanwhile, the Et-Alk-Uf method exhibited the highest crude protein (89.71 %) and free amino nitrogen (4.34 mg g protein-1) contents. Furthermore, protein digestibility (95.5 %) and protein digestibility corrected amino acid score (1.0) were improved using the Et-Alk-Ac method. Conversely, the amino acid composition, secondary structure, and electrophoretic profiles were generally similar for all CPIs. The Alk-Uf and Et-Alk-Uf methods produced isolates with the highest water solubility (∼39.18 %), water absorption capacity (∼3.86 g water g protein-1), oil absorption capacity (∼2.77 g oil g protein-1), and foaming capacity (∼505.26 %). Finally, the foaming stability (93.75 %) and foaming density (34.38 %) were increased when employing the Alk-Ac method. These findings suggest that, in general, the Alk-Uf and Et-Alk-Uf methods can be used to obtain CPIs with high added value for use in food formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...