Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676489

RESUMO

Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disorder (ND), affecting more than 44 million individuals globally as of 2023. It is characterized by cognitive dysfunction and an inability to perform daily activities. The progression of AD is associated with the accumulation of amyloid beta (Aß), the formation of neurofibrillary tangles (NFT), increased oxidative stress, neuroinflammation, mitochondrial dysfunction, and endoplasmic reticulum stress. Presently, various phytomedicines and their bioactive compounds have been identified for their neuroprotective effects in reducing oxidative stress, alleviating neuroinflammation, and mitigating the accumulation of Aß and acetylcholinesterase enzymes in the hippocampus and cerebral cortex regions of the brain. However, despite demonstrating promising anti-Alzheimer's effects, the clinical utilization of phytoconstituents remains limited in scope. The key factor contributing to this limitation is the challenges inherent in traditional drug delivery systems, which impede their effectiveness and efficiency. These difficulties encompass insufficient drug targeting, restricted drug solubility and stability, brief duration of action, and a lack of control over drug release. Consequently, these constraints result in diminished bioavailability and insufficient permeability across the blood-brain barrier (BBB). In response to these challenges, novel drug delivery systems (NDDS) founded on nanoformulations have emerged as a hopeful strategy to augment the bioavailability and BBB permeability of bioactive compounds with poor solubility. Among these systems, nanoemulsion (NE) have been extensively investigated for their potential in targeting AD. NE offers several advantages, such as ease of preparation, high drug loading, and high stability. Due to their nanosize droplets, NE also improves gut and BBB permeability leading to enhanced permeability of the drug in systemic circulation and the brain. Various studies have reported the testing of NE-based phytoconstituents and their bioactives in different animal species, including transgenic, Wistar, and Sprague-Dawley (SD) rats, as well as mice. However, transgenic mice are commonly employed in AD research to analyze the effects of Aß. In this review, various aspects such as the neuroprotective role of various phytoconstituents, the challenges associated with conventional drug delivery, and the need for NDDS, particularly NE, are discussed. Various studies involving phytoconstituent-based NE for the treatment of AD are also discussed.

2.
Curr Pharm Des ; 29(39): 3137-3153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38031774

RESUMO

One-third of people will be diagnosed with cancer at some point in their lives, making it the second leading cause of death globally each year after cardiovascular disease. The complex anticancer molecular mechanisms have been understood clearly with the advent of improved genomic, proteomic, and bioinformatics. Our understanding of the complex interplay between numerous genes and regulatory genetic components within cells explaining how this might lead to malignant phenotypes has greatly expanded. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. Many popular anticancer drugs, including irinotecan, vincristine, etoposide, and paclitaxel, have botanical origins. Actinomycin D and mitomycin C come from bacteria, while bleomycin and curacin come from marine creatures. However, there is a lack of research evaluating the potential of algae-based anticancer treatments, especially in terms of their molecular mechanisms. Despite increasing interest in the former, and the promise of the compounds to treat tumours that have been resistant to existing treatment, pharmaceutical development of these compounds has lagged. Thus, the current review focuses on the key algal sources that have been exploited as anticancer therapeutic leads, including their biological origins, phytochemistry, and the challenges involved in converting such leads into effective anticancer drugs.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Humanos , Proteômica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Desenvolvimento de Medicamentos , Plantas , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
3.
Pharmaceutics ; 14(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365218

RESUMO

Rosmarinic acid (RA) is a polyphenolic metabolite found in various culinary, dietary sources, and medicinal plants like Coleus scutellarioides (Linn) Benth., Lavandula angustifolia Linn., Mellisa officinalis Linn., Origanum vulgare Linn., Rosmarinus officinalis Linn., Zataria multiflora Boiss. and Zhumeria majdae Rech. F. Apart from its dietary and therapeutic values, RA is an important anticancer phytochemical owing to its multi-targeting anticancer mechanism. These properties provide a scope for RA's therapeutic uses beyond its traditional use as a dietary source. However, its oral bioavailability is limited due to its poor solubility and permeability. This impedes its efficacy in treating cancer. Indeed, in recent years, tremendous efforts have been put towards the development of nanoformulations of RA for treating cancer. However, this research is in its initial stage as bringing a nanoparticle into the market itself is associated with many issues such as stability, toxicity, and scale-up issues. Considering these pitfalls during formulation development and overcoming them would surely provide a new face to RA as a nanomedicine to treat cancer. A literature search was conducted to systematically review the various biological sources, extraction techniques, and anticancer mechanisms through which RA showed multiple therapeutic effects. Various nanocarriers of RA pertaining to its anticancer activity are also discussed in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...