Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065489

RESUMO

This study explores the potential of olive leaves, long integral to Mediterranean traditional medicine, as a rich source of valuable compounds. The challenge lies in their considerable water content, hindering these compounds' full valorization. Four drying methods (air-drying, oven-drying, freeze-drying and solar-drying) were investigated for their impact on nutrient and bioactive compound content in the leaves of four olive varieties ("Arbequina", "Koroneiki", "Menara" and "Picholine Marocaine") cultivated in Morocco. In their fresh state, "Picholine Marocaine" exhibited the highest protein levels (6.11%), "Arbequina" had the highest phenolic content (20.18 mg gallic acid equivalents/g fresh weight (FW)), and "Koroneiki" and "Menara" were highest in flavonoids (3.28 mg quercetin equivalents/g FW). Specific drying methods proved optimal for different varieties. Oven-drying at 60 °C and 70 °C effectively preserved protein, while phenolic content varied with drying conditions. Air-drying and freeze-drying demonstrated effectiveness for flavonoids. In addition, an analytical approach using high-performance liquid chromatography and diode array detection (HPLC-DAD) was applied to investigate the effects of the different drying methods on the bioactive fraction of the analyzed samples. The results showed qualitative and quantitative differences depending on both the variety and the drying method used. A total of 11 phenolic compounds were tentatively identified, with oleuropein being the most abundant in all the samples analyzed. The freeze-dried samples showed the highest content of oleuropein in the varieties "Arbequina" and "Picholine Marocaine" compared to the other methods analyzed. In contrast, "Koroneiki" and "Menara" had higher oleuropein content when air dried. Overall, the obtained results highlight the importance of tailored drying techniques for the preservation of nutrients and bioactive compounds in olive leaves.

2.
J Sci Food Agric ; 104(10): 5689-5697, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372563

RESUMO

BACKGROUND: To manage industrial waste in accordance with the circular bioeconomy concept it is sometimes necessary to handle grape seeds, an abundant by-product of the wine-making process. This study presents a process based on ultrasound technology for the extraction of grape-seed proteins, due to their nutritional and techno-functional properties. The protein content of extracts obtained under silent and lab-scale conditions was compared with that obtained under semi-industrial ultrasound conditions, and the chemical composition (carbohydrates, total phenols, and lipids) and the elemental profiles of the final, up-scaled downstream extracts were characterized. RESULTS: This work found that the maximum amount of protein in the final product was 378.31 g.kg-1 of the extract. Chemical characterization revealed that each 1 kg of extract had an average content of 326.19 g gallic acid equivalent as total phenols, 162.57 g glucose equivalent as carbohydrates, and 382.76 g of lipophilic compounds. Furthermore, when the extract was checked for hazardous elements, none were found in levels that could be considered a risk for human health. CONCLUSION: The proposed semi-industrial strategy has the potential to contribute greatly to the valorization of grape seeds through the preparation of a protein-rich extract that can be used as an alternative to synthetic wine stabilizers and for the development of novel food and nutraceutical products. © 2024 Society of Chemical Industry.


Assuntos
Proteínas de Plantas , Sementes , Vitis , Vitis/química , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/análise , Fenóis/química , Fenóis/análise , Resíduos Industriais/análise , Resíduos Industriais/economia , Ultrassom/métodos , Vinho/análise , Manipulação de Alimentos/métodos , Extratos Vegetais/química
3.
Molecules ; 28(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138521

RESUMO

Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.


Assuntos
Inteligência Artificial , Fenômenos Químicos , Biopolímeros , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...