Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050174

RESUMO

The reproductive stage of cotton (Gossypium sp.) is highly sensitive to waterlogging. The identification of potential elite upland cotton (Gossypium hirsutum) cultivar(s) having higher waterlogging tolerance is crucial to expanding cotton cultivation in the low-lying areas. The present study was designed to investigate the effect of waterlogging on the reproductive development of four elite upland cotton cultivars, namely, Rupali-1, CB-12, CB-13, and DM-3, against four waterlogging durations (e.g., 0, 3, 6, and 9-day). Waterlogging stress significantly impacted morpho-physiological, biochemical, and yield attributes of cotton. Two cotton cultivars, e.g., CB-12 and Rupali-1, showed the lowest reduction in plant height (6 and 9%, respectively) and boll weight (8 and 5%, respectively) at the highest waterlogging duration of 9 days. Physiological and biochemical data revealed that higher leaf chlorophyll, proline, and relative water contents, and lower malondialdehyde contents, particularly in CB-12 and Rupali-1, were positively correlated with yield. Notably, CB-12 and Rupali-1 had higher seed cotton weight (90.34 and 83.10 g, respectively), lint weight (40.12 and 39.32 g, respectively), and seed weight (49.47 and 43.78 g, respectively) per plant than CB-13 and DM-3 in response to the highest duration of waterlogging of 9 days. Moreover, extensive multivariate analyses like Spearman correlation and the principle component analysis revealed that CB-12 and Rupali-1 had greater coefficients in yield and physiological attributes at 9-day waterlogging, whereas CB-13 and DM-3 were sensitive cultivars in response to the same levels of waterlogging. Thus, CB-12 and Rupali-1 might be well adapted to the low-lying waterlogging-prone areas for high and sustained yield.

2.
Life (Basel) ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556416

RESUMO

Nitrogen (N) is a highly essential macronutrient for plant root growth and grain yield (GY). To assess the relationship among N, root traits, and the yield of boro (dry season irrigated) rice, a pot experiment was performed in the Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh, during the boro rice season of 2020-2021. Three boro rice varieties, namely BRRI dhan29, Hira-2, and Binadhan-10, were planted at four N doses: 0 kg ha-1 (N0), 70 kg ha-1 (N70), 140 kg ha-1 (N140), and 210 kg ha-1 (N210). The experiment was conducted following a completely randomized design with three replicates. The varieties were evaluated for root number (RN), root length (RL), root volume (RV), root porosity (RP), leaf area index (LAI), total dry matter (TDM), and yield. The results indicated that the Binadhan-10, Hira-2, and BRRI dhan29 varieties produced better root characteristics under at the N140 and N210 levels. A substantial positive association was noticed between the grain yield and the root traits, except for root porosity. Based on the root traits and growth dynamics, Binadhan-10 performed the best at the N140 level and produced the highest grain yield (26.96 g pot-1), followed by Hira-2 (26.35 g pot-1) and BRRI dhan29 (25.90 g pot-1).

3.
Life (Basel) ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36294954

RESUMO

Understanding the link between root morphological traits and yields is crucial for improving crop management. To evaluate this link, a pot experiment was conducted in the net house of the Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh during the boro(dry season irrigated) rice growing season of 2019-20. Thirteen cultivars, named BRRI dhan29, BRRI dhan58, BRRI dhan67, BRRI dhan74, BRRI dhan81, Binadhan-8, Binadhan-10, Hira-2, Tej gold, SL8H, Jagliboro, Rata boro, and Lakhai, were used following a completely randomized design (CRD) with three replications. The cultivars were screened for root number (RN), root length (RL), root volume (RV), root porosity (RP), leaf area index (LAI), total dry matter (TDM), and grain yield (GY). A considerable variation in root traits, LAI, and TDM were found among the studied cultivars, and the highest GY (26.26 g pot-1)was found for Binahan-10. Thirteen cultivars were grouped into three clusters using hierarchical cluster analysis, where clusters 1, 2, and 3 assembled with 3, 5, and 5 cultivars, respectively. Considering all of the studied traits, Cluster 3 (Binadhan-10, Hira-2, BRRI dhan29, BRRI dhan58, and Tejgold) showed promise, followed by Cluster 2 (BRRI dhan81, BRRI dhan67, SL8H, BRRI dhan74, and Binadhan-8). Principal component analysis (PCA) revealed that the RV, RDW, RFW, TDM, and GY are effective traits for rice cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...