Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Neuropharmacol ; 22(13): e310524230577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847379

RESUMO

BACKGROUND AND OBJECTIVE: Brain disorders are one of the major global mortality issues, and their early detection is crucial for healing. Machine learning, specifically deep learning, is a technology that is increasingly being used to detect and diagnose brain disorders. Our objective is to provide a quantitative bibliometric analysis of the field to inform researchers about trends that can inform their Research directions in the future. METHODS: We carried out a bibliometric analysis to create an overview of brain disorder detection and diagnosis using machine learning and deep learning. Our bibliometric analysis includes 1550 articles gathered from the Scopus database on automated brain disorder detection and diagnosis using machine learning and deep learning published from 2015 to May 2023. A thorough bibliometric análisis is carried out with the help of Biblioshiny and the VOSviewer platform. Citation analysis and various measures of collaboration are analyzed in the study. RESULTS: According to a study, maximum research is reported in 2022, with a consistent rise from preceding years. The majority of the authors referenced have concentrated on multiclass classification and innovative convolutional neural network models that are effective in this field. A keyword analysis revealed that among the several brain disorder types, Alzheimer's, autism, and Parkinson's disease had received the greatest attention. In terms of both authors and institutes, the USA, China, and India are among the most collaborating countries. We built a future research agenda based on our findings to help progress research on machine learning and deep learning for brain disorder detection and diagnosis. CONCLUSION: In summary, our quantitative bibliometric analysis provides useful insights about trends in the field and points them to potential directions in applying machine learning and deep learning for brain disorder detection and diagnosis.

.


Assuntos
Bibliometria , Encefalopatias , Aprendizado Profundo , Aprendizado de Máquina , Humanos , Encefalopatias/diagnóstico
2.
PeerJ Comput Sci ; 9: e1452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547417

RESUMO

Background: Figures and captions in medical documentation contain important information. As a result, researchers are becoming more interested in obtaining published medical figures from medical papers and utilizing the captions as a knowledge source. Methods: This work introduces a unique and successful six-fold methodology for extracting figure-caption pairs. The A-torus wavelet transform is used to retrieve the first edge from the scanned page. Then, using the maximally stable extremal regions connected component feature, text and graphical contents are isolated from the edge document, and multi-layer perceptron is used to successfully detect and retrieve figures and captions from medical records. The figure-caption pair is then extracted using the bounding box approach. The files that contain the figures and captions are saved separately and supplied to the end useras theoutput of any investigation. The proposed approach is evaluated using a self-created database based on the pages collected from five open access books: Sergey Makarov, Gregory Noetscher and Aapo Nummenmaa's book "Brain and Human Body Modelling 2021", "Healthcare and Disease Burden in Africa" by Ilha Niohuru, "All-Optical Methods to Study Neuronal Function" by Eirini Papagiakoumou, "RNA, the Epicenter of Genetic Information" by John Mattick and Paulo Amaral and "Illustrated Manual of Pediatric Dermatology" by Susan Bayliss Mallory, Alanna Bree and Peggy Chern. Results: Experiments and findings comparing the new method to earlier systems reveal a significant increase in efficiency, demonstrating the suggested technique's robustness and efficiency.

3.
PeerJ Comput Sci ; 9: e1250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346504

RESUMO

Background: Animal illness is a disturbance in an animal's natural condition that disrupts or changes critical functions. Concern over animal illnesses stretches back to the earliest human interactions with animals and is mirrored in early religious and magical beliefs. Animals have long been recognized as disease carriers. Man has most likely been bitten, stung, kicked, and gored by animals for as long as he has been alive; also, early man fell ill or died after consuming the flesh of deceased animals. Man has recently learned that numerous invertebrates are capable of transferring disease-causing pathogens from man to man or from other vertebrates to man. These animals, which function as hosts, agents, and carriers of disease, play a significant role in the transmission and perpetuation of human sickness. Thus, there is a need to detect unhealthy animals from a whole group of animals. Methods: In this study, a deep learning-based method is used to detect or separate out healthy-unhealthy animals. As the dataset contains a smaller number of images, an image augmentation-based method is used prior to feed the data in the deep learning network. Flipping, scale-up, sale-down and orientation is applied in the combination of one to four to increase the number of images as well as to make the system robust from these variations. One fuzzy-based brightness correction method is proposed to correct the brightness of the image. Lastly, semi-supervised generative adversarial network (SGAN) is used to detect the healthy-unhealthy animal images. As per our knowledge, this is the first article which is prepared to detect healthy-unhealthy animal images. Results: The outcome of the method is tested on augmented COCO dataset and achieved 91% accuracy which is showing the efficacy of the method. Conclusions: A novel two-fold animal healthy-unhealthy detection system is proposed in this study. The result gives 91.4% accuracy of the model and detects the health of the animals in the pictures accurately. Thus, the system improved the literature on healthy-unhealthy animal detection techniques. The proposed approach may effortlessly be utilized in many computer vision systems that could be confused by the existence of a healthy-unhealthy animal.

4.
SN Comput Sci ; 1(4): 197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33063048

RESUMO

COVID-19 is a pandemic that has affected over 170 countries around the world. The number of infected and deceased patients has been increasing at an alarming rate in almost all the affected nations. Forecasting techniques can be inculcated thereby assisting in designing better strategies and in taking productive decisions. These techniques assess the situations of the past thereby enabling better predictions about the situation to occur in the future. These predictions might help to prepare against possible threats and consequences. Forecasting techniques play a very important role in yielding accurate predictions. This study categorizes forecasting techniques into two types, namely, stochastic theory mathematical models and data science/machine learning techniques. Data collected from various platforms also play a vital role in forecasting. In this study, two categories of datasets have been discussed, i.e., big data accessed from World Health Organization/National databases and data from a social media communication. Forecasting of a pandemic can be done based on various parameters such as the impact of environmental factors, incubation period, the impact of quarantine, age, gender and many more. These techniques and parameters used for forecasting are extensively studied in this work. However, forecasting techniques come with their own set of challenges (technical and generic). This study discusses these challenges and also provides a set of recommendations for the people who are currently fighting the global COVID-19 pandemic.

5.
Curr Med Imaging ; 16(10): 1214-1228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32108002

RESUMO

A huge amount of medical data is generated every second, and a significant percentage of the data are images that need to be analyzed and processed. One of the key challenges in this regard is the recovery of the data of medical images. The medical image recovery procedure should be done automatically by the computers that are the method of identifying object concepts and assigning homologous tags to them. To discover the hidden concepts in the medical images, the lowlevel characteristics should be used to achieve high-level concepts and that is a challenging task. In any specific case, it requires human involvement to determine the significance of the image. To allow machine-based reasoning on the medical evidence collected, the data must be accompanied by additional interpretive semantics; a change from a pure data-intensive methodology to a model of evidence rich in semantics. In this state-of-art, data tagging methods related to medical images are surveyed which is an important aspect for the recognition of a huge number of medical images. Different types of tags related to the medical image, prerequisites of medical data tagging, different techniques to develop medical image tags, different medical image tagging algorithms and different tools that are used to create the tags are discussed in this paper. The aim of this state-of-art paper is to produce a summary and a set of guidelines for using the tags for the identification of medical images and to identify the challenges and future research directions of tagging medical images.


Assuntos
Algoritmos , Semântica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...