Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4953, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511490

RESUMO

Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.


Assuntos
Deficiência Intelectual , Humanos , Mutação , Deficiência Intelectual/genética , Código Genético
2.
Sci Rep ; 11(1): 16579, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400669

RESUMO

Recombinant MrNV capsid protein has been shown to effectively deliver plasmid DNA and dsRNA into Sf9 insect cells and shrimp tissues. To extend its application to cancer cell-targeting drug delivery, we created three different types of chimeric MrNV virus-like particles (VLPs) (R-MrNV, I-MrNV, and E-MrNV) that have specificity toward the epidermal growth factor receptor (EGFR), a cancer cell biomarker, by incorporating the EGFR-specific GE11 peptide at 3 different locations within the host cell recognition site of the capsid. All three chimeric MrNV-VLPs preserved the ability to form a mulberry-like VLP structure and to encapsulate EGFP DNA plasmid with an efficiency comparable to that previously reported for normal MrNV (N-MrNV). Compared to N-MrNV, the chimeric R-MrNV and E-MrNV carrying the exposed GE-11 peptide showed a significantly enhanced binding and internalization abilities that were specific towards EGFR expression in colorectal cancer cells (SW480). Specific targeting of chimeric MrNV to EGFR was proven by both EGFR silencing with siRNA vector and a competition with excess GE-11 peptide as well as the use of EGFR-negative colorectal cells (SW620) and breast cancer cells (MCF7). We demonstrated here that both chimeric R-MrNV and E-MrNV could be used to encapsulate cargo such as exogenous DNA and deliver it specifically to EGFR-positive cells. Our study presents the potential use of surface-modified VLPs of shrimp virus origin as nanocontainers for targeted cancer drug delivery.


Assuntos
Adenocarcinoma/tratamento farmacológico , Proteínas do Capsídeo/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Nodaviridae/química , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Recombinante/administração & dosagem , DNA Recombinante/genética , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Recombinantes de Fusão/genética
3.
Sci Rep ; 8(1): 12424, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127519

RESUMO

Tyrosine phosphorylation of Fas (TNFRSF6/CD95) in its death domain turns off Fas-mediated apoptosis, turns on the pro-survival signal, and has implications in different cancers types. We show here that Fas in its pro-survival state, phosphorylated at Y291 (pY291-Fas), functionally interacts with the epidermal growth factor receptor (EGFR), a key cancer-driving protein and major therapeutic target. Using an evolution-guided pY291-Fas proxy, RNA interference, and site-specific phospho-protein detection, we show that pY291-Fas significantly intensifies EGFR signaling in anti-EGFR-resistant colorectal cancer cells via the Yes-1/STAT3-mediated pathway. The pY291-Fas is essential for the EGF-induced formation of the Fas-mediated nuclear EGFR/STAT3 signaling complex consisting of Fas, EGFR, Yes-1, Src, and STAT3. The pY291-Fas accumulates in the nucleus upon EGF treatment and promotes the nuclear localization of phospho-EGFR and phospho-STAT3, the expression of cyclin D1, the activation of STAT3-mediated Akt and MAPK pathways, and cell proliferation and migration. This novel cancer-promoting function of phosphorylated Fas in the nuclear EGFR signaling constitutes the foundation for developing pro-survival-Fas targeted anti-cancer therapies to overcome disease recurrence in patients with anti-EGFR resistant cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fosforilação/fisiologia , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Receptor fas/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Ciclina D1/metabolismo , Receptores ErbB/metabolismo , Células HCT116 , Humanos , Recidiva Local de Neoplasia/metabolismo , Transdução de Sinais/fisiologia
4.
Methods Mol Biol ; 1557: 173-188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28078592

RESUMO

Phosphorylation of two tyrosines in the death domain of CD95 is a critical mechanism in determining the receptor's choices between cell death and survival signals. Recently, site-specific monoclonal antibodies against phosphorylated tyrosines of CD95 have been generated and used to successfully detect each phosphorylated death domain tyrosine of CD95 directly and separately by immunoblotting. Here we provide detailed protocols and useful tips for a successful site-specific detection of phosphorylated death domain tyrosine of CD95 following a protein separation by sizes (conventional SDS-PAGE) and by degrees of phosphorylation (phospho-protein affinity, mobility shift SDS-PAGE).


Assuntos
Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Fosfoproteínas/isolamento & purificação , Fosfotirosina/metabolismo , Receptor fas/isolamento & purificação , Receptor fas/metabolismo , Linhagem Celular , Cromatografia de Afinidade/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Immunoblotting , Fosfoproteínas/química , Fosforilação , Fosfotirosina/química , Receptor fas/química
5.
Front Immunol ; 7: 429, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799932

RESUMO

The Fas/FasL system is known, first and foremost, as a potent apoptosis activator. While its proapoptotic features have been studied extensively, evidence that the Fas/FasL system can elicit non-death signals has also accumulated. These non-death signals can promote survival, proliferation, migration, and invasion of cells. The key molecular mechanism that determines the shift from cell death to non-death signals had remained unclear until the recent identification of the tyrosine phosphorylation in the death domain of Fas as the reversible signaling switch. In this review, we present the connection between the recent findings regarding the control of Fas multi-signals and the context-dependent signaling choices. This information can help explain variable roles of Fas signaling pathway in different pathologies.

6.
PLoS Biol ; 14(3): e1002401, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26942442

RESUMO

Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive "Fas apoptosis" to "Fas multisignals" paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases.


Assuntos
Evolução Molecular , Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptor fas/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Apoptose , Endocitose , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Estrutura Terciária de Proteína
7.
Nature ; 522(7557): 482-6, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25874673

RESUMO

Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/genética , Moléculas de Adesão Celular/metabolismo , Divisão Celular/genética , Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Dados de Sequência Molecular , Invasividade Neoplásica/genética , Neoplasias/enzimologia , Neoplasias/genética , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Proteínas ras/genética , Proteínas ras/metabolismo
8.
Cancer Lett ; 354(2): 355-64, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25199763

RESUMO

Fas and PI3K/Akt signaling pathways pivotally impact on cancer cell death and survival respectively and are considered as promising targets for innovative anticancer therapies. To better characterize the combination effect of PI3K/Akt inhibitors and Fas agonists and understand the profile of the interaction between PI3K/Akt and Fas signaling, we qualitatively and quantitatively evaluated the combination effect of PI3K/Akt inhibitors LY294002, Akt inhibitor VIII and FasL. At the concentration that can block cell cycle progression and DNA synthesis but not elicit apoptosis, these inhibitors potentiate FasL to induce apoptosis. At higher concentrations, when the PI3K/Akt inhibitors induce apoptosis, they synergize FasL to induce apoptosis. In addition, PI3K/Akt inhibition significantly facilitates the Fas-mediated apoptotic signaling. Understanding the combination effects between PI3K/Akt inhibition and Fas activation not only leads to rational design of effective combination therapy of PI3K/Akt inhibitors but also improve our knowledge about the impact of PI3K-Akt pathway on Fas signaling and the potential modulation of innate immune system by PI3K-Akt-targeting drugs in anticancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteína Ligante Fas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptor fas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/administração & dosagem , Cromonas/farmacologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Proteína Ligante Fas/administração & dosagem , Proteína Ligante Fas/metabolismo , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Transfecção
9.
J Immunol ; 189(6): 2815-23, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22891283

RESUMO

Activated T cells secrete Fas ligand (FasL)-containing vesicles (secreted vesicles) that induce death of target cells. We provide evidence that secreted vesicles from culture supernatants (Csup) of various origins are able to generate both Fas-dependent apoptotic and Fas-independent, nonapoptotic cell death. In the absence of Fas, the nonapoptotic, Fas-independent pathway could still induce cell death. In contrast to RIP-independent classical Fas-induced cell death triggered by cross-linked or membrane-bound FasL, CSup-derived stimuli-induced apoptosis exhibited unique molecular and enzymatic characteristics. It could be partially inhibited by blocking cathepsin D enzyme activity and required the presence of RIP. Whereas stimulation with CSup, derived from both FasL-overexpressing Jurkat cells and PBMC, could induce cell death, the requirements for Fas-associated death domain protein and caspase-9 were different between the two systems. Our study highlights an important distinction between cell contact-mediated and secreted vesicle-generated activation-induced cell death and also demonstrates that the type of the secreted vesicles can also modify the cell death route. We propose that besides cell-to-cell interaction-mediated Fas triggering, stimuli induced by secreted vesicles can mediate important additional cell death signals regulating activation-induced cell death under physiological conditions.


Assuntos
Apoptose/imunologia , Vesículas Citoplasmáticas/imunologia , Vesículas Citoplasmáticas/metabolismo , Ativação Linfocitária/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptor fas/fisiologia , Comunicação Celular/imunologia , Morte Celular/imunologia , Transformação Celular Neoplásica/imunologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citidina Desaminase/fisiologia , Vesículas Citoplasmáticas/enzimologia , Testes Imunológicos de Citotoxicidade , Humanos , Células Jurkat , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Subpopulações de Linfócitos T/enzimologia
10.
Exp Cell Res ; 316(9): 1513-22, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20298688

RESUMO

Fas interaction at the plasma membrane with its lipid and protein environment plays a crucial role in the early steps of Fas signalling induced by Fas ligand binding. Particularly, Fas localisation in the raft nanodomains, ezrin-mediated interaction with the actin cytoskeleton and subsequent internalization are critical steps in Fas-mediated cell death. We identified a lysine-rich region (LRR) in the cytoplasmic, membrane-proximal region of Fas as a key determinant modulating these initial events. Through a genetic approach, we demonstrate that Fas LRR represents another signal additional to palmitoylation targeting Fas to the raft nanodomains, and modulates Fas interaction with the cytoskeleton.


Assuntos
Apoptose , Lisina/metabolismo , Microdomínios da Membrana/metabolismo , Transdução de Sinais , Receptor fas/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteína Ligante Fas , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Lipoilação , Lisina/química , Lisina/genética , Camundongos , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptor fas/genética
11.
FEBS Lett ; 584(5): 1033-40, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20138036

RESUMO

The activation of cysteine-aspartic proteases or caspases and the dynamic arrangement of cytoskeletal components are crucial during apoptosis. Here we describe the fate of Fas downstream of the FasL-induced internalization step, including formation of caspase-dependent SDS-stable Fas complexes, which is mediated by cytoskeleton integrity. We show, in particular, that following FasL treatment, the Fas lower aggregate complex can be co-immunoprecipitated with tubulin and an active form of caspase-8 and that this interaction contributes to the propagation of FasL-induced cell death. The importance of cytoskeletal components during FasL-induced apoptosis is highlighted by our detection of a pool of microtubule-associated Fas complexes.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Microtúbulos/fisiologia , Receptor fas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Proteína Ligante Fas/farmacologia , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo
12.
FEBS Lett ; 582(30): 4176-84, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19041866

RESUMO

This study describes the molecular signaling involved in the different cell death modes of triple-negative breast cancer cells induced by hexadecylphosphocholine (HePC/miltefosine), a clinically relevant anticancer alkylphosphocholine. We found that the HePC treatment triggers cell-type-dependent apoptotic and non-apoptotic cell death processes. Moreover, the expression level of the apoptosis activator Fas, and Fas/Fas ligand signaling capacity are not attributing factors for the preference toward apoptosis. Using Fas siRNA and overexpression approaches we establish that Fas is not a pro-apoptotic factor but a contributor to cell protection in HePC-apoptosis-sensitive cells. The insight in the multi-modal anticancer capability of HePC in triple-negative breast cancer cells may facilitate the targeted design of therapeutic strategies against triple-negative breast cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fosforilcolina/análogos & derivados , Apoptose/genética , Linhagem Celular Tumoral , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Humanos , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Receptor fas/genética , Receptor fas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Mol Cancer Ther ; 7(7): 2033-41, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18645013

RESUMO

Gangliosides have been involved in multiple cellular processes such as growth, differentiation and adhesion, and more recently as regulators of cell death signaling pathways. Some of these molecules can be considered as tumor-associated antigens, in particular, N-glycolyl sialic acid-containing gangliosides, which are promising candidates for cancer-targeted therapy because of their low expression in normal human tissues. In this study, we provided the molecular and cellular characterization of a novel cell death mechanism induced by the anti-NGcGM3 14F7 monoclonal antibody (mAb) in L1210 murine tumor cell line but not in mouse normal cells (B and CD4(+) T lymphocytes) that expressed the antigen. Impairment of ganglioside synthesis in tumor cells abrogated the 14F7 mAb cytotoxic effect; however, exogenous reincorporation of the ganglioside did not restore tumor cell sensitivity to 14F7 mAb-induced cytotoxicity. 14F7 F(ab')(2) but not Fab fragments retained the cytotoxic capacity of the whole mAb. By contrary, other mAb, which recognizes N-glycolylated gangliosides, did not show any cytotoxic effect. These mAbs showed quite different capacities to bind NGcGM3-positive cell lines measured by binding inhibition experiments. Interestingly, this complement-independent cell death mechanism did not resemble apoptosis, because no DNA fragmentation, caspase activation, or Fas mediation were observed. However, NGcGM3 ganglioside-mediated 14F7 mAb-induced cell death was accompanied by cellular swelling, membrane lesion formation, and cytoskeleton activation, suggesting an oncosis-like phenomenon. This novel mechanism of cell death lets us to support further therapeutic approaches using NGcGM3 as a molecular target for antibody-based cancer immunotherapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Gangliosídeo G(M3)/imunologia , Neoplasias/patologia , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Especificidade de Anticorpos/efeitos dos fármacos , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
14.
Mol Cancer Ther ; 7(7): 2033-2041, July, 2008. ilus, graf
Artigo em Inglês | CUMED | ID: cum-39789

RESUMO

Gangliosides have been involved in multiple cellular processes such as growth, differentiation and adhesion, and more recently as regulators of cell death signaling pathways. Some of these molecules can be considered as tumor-associated antigens, in particular, N-glycolyl sialic acid¨Ccontaining gangliosides, which are promising candidates for cancer-targeted therapy because of their low expression in normal human tissues. In this study, we provided the molecular and cellular characterization of a novel cell death mechanism induced by the anti-NGcGM3 14F7 monoclonal antibody (mAb) in L1210 murine tumor cell line but not in mouse normal cells (B and CD4+ T lymphocytes) that expressed the antigen. Impairment of ganglioside synthesis in tumor cells abrogated the 14F7 mAb cytotoxic effect; however, exogenous reincorporation of the ganglioside did not restore tumor cell sensitivity to 14F7 mAb-induced cytotoxicity. 14F7 F(ab¡ä)2 but not Fab fragments retained the cytotoxic capacity of the whole mAb. By contrary, other mAb, which recognizes N-glycolylated gangliosides, did not show any cytotoxic effect. These mAbs showed quite different capacities to bind NGcGM3-positive cell lines measured by binding inhibition experiments. Interestingly, this complement-independent cell death mechanism did not resemble apoptosis, because no DNA fragmentation, caspase activation, or Fas mediation were observed. However, NGcGM3 ganglioside-mediated 14F7 mAb-induced cell death was accompanied by cellular swelling, membrane lesion formation, and cytoskeleton activation, suggesting an oncosis-like phenomenon. This novel mechanism of cell death lets us to support further therapeutic approaches using NGcGM3 as a molecular target for antibody-based cancer immunotherapy(AU)


Assuntos
Animais , Anticorpos Monoclonais/farmacologia , /farmacologia , Membrana Celular , Membrana Celular/metabolismo , /imunologia , Neoplasias/patologia
15.
J Cell Physiol ; 213(1): 201-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17474085

RESUMO

Cumulus cell layers of expanded cumulus oocyte complexes (COCs) are interlinked with networks of hyaluronic acid, chondroitin sulfate B proteoglycans and link proteins, and they can be dispersed by sperm surface hyaluronidases. In this report, we showed that arylsulfatase A (AS-A), existing on the sperm head surface, also had this dispersion action. Purified AS-A free of protease, hyaluronidase and chondroitinase activities could disperse the cumulus matrix of expanded COCs. However, this COC dispersion action was not associated with AS-A desulfation activity, assayed by using p-nitrocatecholsulfate (artificial substrate). COCs incubated for 1 h with sperm pretreated with anti-AS-A IgG in the presence of apigenin (a hyaluronidase inhibitor) did not exhibit matrix dispersion, whereas several cumulus layers were already dispersed in COCs incubated with sperm pretreated with preimmune IgG. Furthermore, sperm from AS-A null mice showed a significant delay in COC dispersion, compared with wild-type sperm. Within 1 h of sperm-COC co-incubation, the size of COCs incubated with AS-A null sperm was 65% of the original dimension, whereas that of COCs inseminated with wild-type sperm was only 17%. A further delay in COC dispersion by AS-A(-/-) mouse sperm was observed when apigenin was present in the co-incubation. We also showed for the first time that AS-A had a specific affinity for chondroitin sulfate B, a component of cumulus matrix proteoglycan networks; this might provide a mechanism of cumulus matrix destabilization induced by sperm surface AS-A.


Assuntos
Cerebrosídeo Sulfatase/fisiologia , Oócitos/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/enzimologia , Animais , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/isolamento & purificação , Dermatan Sulfato/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Técnicas In Vitro , Leucodistrofia Metacromática/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Ovulação , Suínos
16.
EMBO J ; 26(1): 209-20, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17159908

RESUMO

Localization of the death receptor Fas to specialized membrane microdomains is crucial to Fas-mediated cell death signaling. Here, we report that the post-translational modification of Fas by palmitoylation at the membrane proximal cysteine residue in the cytoplasmic region is the targeting signal for Fas localization to lipid rafts, as demonstrated in both cell-free and living cell systems. Palmitoylation is required for the redistribution of Fas to actin cytoskeleton-linked rafts upon Fas stimulation and for the raft-dependent, ezrin-mediated cytoskeleton association, which is necessary for the efficient Fas receptor internalization, death-inducing signaling complex assembly and subsequent caspase cascade leading to cell death.


Assuntos
Morte Celular , Ácido Palmítico/química , Receptor fas/química , Sequência de Aminoácidos , Animais , Proteínas do Citoesqueleto/química , Citoesqueleto/metabolismo , Proteína Ligante Fas/química , Humanos , Microdomínios da Membrana/química , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
17.
Dev Biol ; 290(1): 220-35, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16387295

RESUMO

Sperm gain full ability to bind to the zona(e) pellucida(e) (ZP) during capacitation. Since lipid rafts are implicated in cell adhesion, we determined whether capacitated sperm lipid rafts had affinity for the ZP. We demonstrated that lipid rafts, isolated as low-density detergent resistant membranes (DRMs), from capacitated pig sperm had ability to bind to homologous ZP. This binding was dependent on pig ZPB glycoprotein, a major participant in sperm binding. Capacitated sperm DRMs were also enriched in the male germ cell specific sulfogalactosylglycerolipid (SGG), which contributed to DRMs-ZP binding. Furthermore, SGG may participate in the formation of sperm DRMs due to its interaction with cholesterol, an integral component of lipid rafts, as shown by infrared spectroscopic studies. Since sperm capacitation is associated with cholesterol efflux from the sperm membrane, we questioned whether the formation of DRMs was compromised in capacitated sperm. Our studies indeed revealed that capacitation induced increased levels of sperm DRMs, with an enhanced ZP affinity. These results corroborated the implication of lipid rafts and SGG in cell adhesion and strongly suggested that the enhanced ZP binding ability of capacitated sperm may be attributed to increased levels and a greater ZP affinity of lipid rafts in the sperm plasma membrane.


Assuntos
Colesterol/metabolismo , Galactolipídeos/fisiologia , Microdomínios da Membrana/metabolismo , Capacitação Espermática/fisiologia , Zona Pelúcida/fisiologia , Animais , Membrana Celular/metabolismo , Feminino , Fertilização/fisiologia , Masculino , Lipídeos de Membrana/metabolismo , Fosforilação , Cabeça do Espermatozoide/fisiologia , Suínos
18.
J Obstet Gynaecol Can ; 25(6): 461-70, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12806448

RESUMO

Historically, the treatment of severe male factor infertility has relied on donor sperm insemination. A decade ago the option of treating severe male factor infertility with partner sperm became a viable alternative. With the introduction of intracytoplasmic sperm injection (ICSI) in conjunction with in vitro fertilization (IVF), only men who produce no sperm are denied the option of fathering their own children. The use of ICSI has been extended to couples with mild male factors. Despite the known genetic risks (both inherent and de novo) of ICSI to offspring, couples with male factors as part of their infertility problem often prefer ICSI to standard IVF, due to apprehension that their sperm might not otherwise succeed in fertilization. This apprehension would be alleviated if an assay for the egg binding capability of human sperm were available. We examine here the possibility that recombinant human zona pellucida 3 (rec hZP3), the primary sperm receptor sulfoglycoprotein of the egg zona pellucida (ZP), be used as a human ZP surrogate for assessing sperm ability to bind to the ZP. Unlike human eggs, which cannot be obtained for this purpose, rec hZP3 can be produced in quantity. An efficient assay can be established by incubating sperm with rec hZP3 coated to a microwell plate. Infertile men with sperm having ability to bind to rec hZP3 can be advised to select standard IVF or intrauterine insemination, which have fewer genetic and medical risks.


Assuntos
Infertilidade Masculina/terapia , Injeções de Esperma Intracitoplásmicas , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Zona Pelúcida/fisiologia , Adulto , Feminino , Fertilização in vitro , Humanos , Masculino , Gravidez
19.
Biol Reprod ; 66(6): 1820-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021068

RESUMO

We have shown previously that male germ cell-specific sulfoglycolipid, sulfogalactosylglycerolipid (SGG), is involved in sperm-zona pellucida binding, and that SGG and its desulfating enzyme, arylsulfatase A (AS-A), coexist in the same sperm head area. However, AS-A exists at a markedly low level in sperm as compared to SGG (i.e., 1/400 of SGG molar concentration). In the present study, we investigated whether perturbation of this molar ratio would interfere with sperm-egg interaction. We demonstrated that purified AS-A bound to the mouse sperm surface through its high affinity with SGG. When capacitated, Percoll gradient-centrifuged mouse sperm were treated for 1 h with various concentrations of AS-A, their binding to zona-intact eggs was inhibited in a dose-dependent manner and reached the background level with 63 nM AS-A. This inhibition could be partially explained by an increase in premature acrosome reaction. The acrosome-reacted sperm population of the 63 nM AS-A-treated sperm sample was twice that of the control sample (treated with 63 nM ovalbumin) at 1 h (i.e., 32% vs. 15%) and rose to 53% at 2 h. This induction was presumably due to SGG aggregation attributed to AS-A, existing as a dimer at neutral pH, and could be mimicked by anti-SGG immunoglobulin (Ig) G/IgM + secondary IgG antibody. Drastic inhibition (75%) of in vivo fertilization was also observed in females inseminated with sperm suspension containing 630 nM AS-A as compared to the rate in females inseminated with sperm suspension included with 630 nM ovalbumin. Our results demonstrate a promising potential for AS-A as a nonhormonal, vaginal contraceptive.


Assuntos
Reação Acrossômica/efeitos dos fármacos , Cerebrosídeo Sulfatase/administração & dosagem , Cerebrosídeo Sulfatase/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Espermatozoides/metabolismo , Animais , Anticoncepcionais Femininos , Dimerização , Galactolipídeos/imunologia , Galactolipídeos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/farmacologia , Imunoglobulina M/farmacologia , Inseminação Artificial , Fígado/química , Masculino , Camundongos , Capacitação Espermática , Zona Pelúcida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...