Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Methods ; 229: 9-16, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838947

RESUMO

Robust segmentation of large and complex conjoined tree structures in 3-D is a major challenge in computer vision. This is particularly true in computational biology, where we often encounter large data structures in size, but few in number, which poses a hard problem for learning algorithms. We show that merging multiscale opening with geodesic path propagation, can shed new light on this classic machine vision challenge, while circumventing the learning issue by developing an unsupervised visual geometry approach (digital topology/morphometry). The novelty of the proposed MSO-GP method comes from the geodesic path propagation being guided by a skeletonization of the conjoined structure that helps to achieve robust segmentation results in a particularly challenging task in this area, that of artery-vein separation from non-contrast pulmonary computed tomography angiograms. This is an important first step in measuring vascular geometry to then diagnose pulmonary diseases and to develop image-based phenotypes. We first present proof-of-concept results on synthetic data, and then verify the performance on pig lung and human lung data with less segmentation time and user intervention needs than those of the competing methods.

4.
Brief Funct Genomics ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183212

RESUMO

The traditional method of drug reuse or repurposing has significantly contributed to the identification of new antiviral compounds and therapeutic targets, enabling rapid response to developing infectious illnesses. This article presents an overview of how modern computational methods are used in drug repurposing for the treatment of viral infectious diseases. These methods utilize data sets that include reviewed information on the host's response to pathogens and drugs, as well as various connections such as gene expression patterns and protein-protein interaction networks. We assess the potential benefits and limitations of these methods by examining monkeypox as a specific example, but the knowledge acquired can be applied to other comparable disease scenarios.

5.
BMC Bioinformatics ; 24(1): 435, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974081

RESUMO

Biclustering of biologically meaningful binary information is essential in many applications related to drug discovery, like protein-protein interactions and gene expressions. However, for robust performance in recently emerging large health datasets, it is important for new biclustering algorithms to be scalable and fast. We present a rapid unsupervised biclustering (RUBic) algorithm that achieves this objective with a novel encoding and search strategy. RUBic significantly reduces the computational overhead on both synthetic and experimental datasets shows significant computational benefits, with respect to several state-of-the-art biclustering algorithms. In 100 synthetic binary datasets, our method took [Formula: see text] s to extract 494,872 biclusters. In the human PPI database of size [Formula: see text], our method generates 1840 biclusters in [Formula: see text] s. On a central nervous system embryonic tumor gene expression dataset of size 712,940, our algorithm takes   101 min to produce 747,069 biclusters, while the recent competing algorithms take significantly more time to produce the same result. RUBic is also evaluated on five different gene expression datasets and shows significant speed-up in execution time with respect to existing approaches to extract significant KEGG-enriched bi-clustering. RUBic can operate on two modes, base and flex, where base mode generates maximal biclusters and flex mode generates less number of clusters and faster based on their biological significance with respect to KEGG pathways. The code is available at ( https://github.com/CMATERJU-BIOINFO/RUBic ) for academic use only.


Assuntos
Algoritmos , Gerenciamento de Dados , Humanos , Bases de Dados Factuais , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
6.
8.
PLoS One ; 18(6): e0286862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352172

RESUMO

Robust semantic segmentation of tumour micro-environment is one of the major open challenges in machine learning enabled computational pathology. Though deep learning based systems have made significant progress, their task agnostic data driven approach often lacks the contextual grounding necessary in biomedical applications. We present a novel fuzzy water flow scheme that takes the coarse segmentation output of a base deep learning framework to then provide a more fine-grained and instance level robust segmentation output. Our two stage synergistic segmentation method, Deep-Fuzz, works especially well for overlapping objects, and achieves state-of-the-art performance in four public cell nuclei segmentation datasets. We also show through visual examples how our final output is better aligned with pathological insights, and thus more clinically interpretable.


Assuntos
Aprendizado Profundo , Núcleo Celular , Aprendizado de Máquina , Água , Processamento de Imagem Assistida por Computador
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2664-2667, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891800

RESUMO

Deep learning enabled medical image analysis is heavily reliant on expert annotations which is costly. We present a simple yet effective automated annotation pipeline that uses autoencoder based heatmaps to exploit high level information that can be extracted from a histology viewer in an unobtrusive fashion. By predicting heatmaps on unseen images the model effectively acts like a robot annotator. The method is demonstrated in the context of coeliac disease histology images in this initial work, but the approach is task agnostic and may be used for other medical image annotation applications. The results are evaluated by a pathologist and also empirically using a deep network for coeliac disease classification. Initial results using this simple but effective approach are encouraging and merit further investigation, specially considering the possibility of scaling this up to a large number of users.


Assuntos
Curadoria de Dados , Histologia , Automação
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3592-3595, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892015

RESUMO

Image-based cell phenotyping is an important and open problem in computational pathology. The two principal challenges are: 1) making the cell cluster properties insensitive to experimental settings (like seed point and feature selection) and 2) ensuring that the phenotypes emerging are biologically relevant and support clinical reporting. To gauge robustness, we first compare the consistency of the phenotypes using self-supervised and supervised features. Through case classification, we analyse the relevance of the self-supervised and supervised feature sets with respect to the clinical diagnosis. In addition, we demonstrate how we can add model explainability through Shapley values to identify more disease relevant cellular phenotypes and measure their importance in context of the disease. Here, myeloproliferative neoplasms, a haematopoietic stem cell disorder, where one particular cell type is of diagnostic relevance is used as an exemplar. The experiments conducted on a set of bone marrow trephines demonstrate an improvement of 7.4 % in accuracy for case classification using cellular phenotypes derived from the supervised scenario.


Assuntos
Aprendizagem , Aprendizado de Máquina Supervisionado , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...