Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 146: 119-28, 2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-25813169

RESUMO

Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between mild narcotic drug papaverine and the acceptors chloranilic acid (Cl-A), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in acetonitrile, their association constants, thermodynamic (ΔG(0), ΔH(0) and ΔS(0)) and other related properties had been described. Papaverine was found to form colored charge-transfer complexes with Cl-A, DDQ and TCNE in acetonitrile. The absorption maxima of the complexes were 518.5, 584.0 and 464.0 nm for Cl-A complex, DDQ complex, and TCNE complex respectively. The compositions of the papaverine complexes were determined to be 1:1 from Job's method of continuous variation. Solid complexes formed between papaverine and the acceptors were isolated. Comparison of the FTIR spectra of the solid complexes between papaverine and the acceptors and their constituents showed considerable shift in absorption peaks, changes in intensities of the peaks and formation of the new bands on complexation. However, no attempt has been made to purify the complexes and study the detailed spectra both theoretically and experimentally. The energies hν(CT) of the charge-transfer complexes were compared with the theoretical values of hν(CT) of the complexes obtained from HOMO and LUMO of the donor and the acceptors. The reasons for the differences in hνCT values were explained. Density function theory was used for calculation. hν(CT) (experimental) values of the transition energies of the complexes in acetonitrile differed from hν(CT) (theoretical) values. ID(V) value of papaverine was calculated. Charge-transfer complexes were assumed to be partial electrovalent compounds with organic dative ions D(+) and A(-) (in the excited state) and attempts had been made to correlate the energy changes for the formation of the complexes with the energy changes for the formation of electrovalent compounds between M(+) and X(-) ions.


Assuntos
Acetonitrilas/química , Benzoquinonas/química , Etilenos/química , Modelos Químicos , Nitrilas/química , Papaverina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
2.
Artigo em Inglês | MEDLINE | ID: mdl-22580135

RESUMO

Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between Isoniazid (pyridine-4-carboxylic acid hydrazide) and the acceptors (p-chloranil, chloranilic acid and tetracyanoethylene) in acetonitrile, their association constants, thermodynamic properties and other related properties were studied. Isoniazid (INH), a widely used anti tubercular agent was found to form beautifully colored charge-transfer complexes with p-chloranil, chloranilic acid and tetracyanoethylene in acetonitrile. The absorption maxima of the complexes were 484, 519 and 479 nm, respectively (isoniazid had no absorption, but the acceptors had absorption in these regions). The composition of the complexes were determined to be 1:1 from Job's method of continuous variations depending on the time period of experiments as the stability of some of the complexes (p-chloranil and tetracyanoethylene complexes) was time dependent. Solid complexes formed between isoniazid and the acceptors were isolated but p-chloranil was found to form two different complexes. FTIR spectra of the complexes and the acceptors were measured. FTIR spectra of the complexes showed considerable shift in absorption peaks, changes in intensities of the peaks and formation of the new band (probably due to hydrogen bonding) on complexation. The thermodynamic association constants and other thermodynamic parameters of the complexes were determined spectrophotometrically taking D and A in varying ratios (2:8-8:2) and also in equimolar ratios. The complex formation was found to be spontaneous and associated with negative changes of ΔG(0), ΔH(0) and ΔS(0). The energies hν(CT) of the charge-transfer complexes were compared with the theoretical values of hν(CT) of the complexes obtained from HOMO and LUMO of the donor and the acceptors. Density function theory utilizing different basis sets was used for calculation. hν(CT) (experimental) values of the transition energies of the complexes in acetonitrile differed from hν(CT) (theoretical) values in the gaseous state. I(D)(V) value of isoniazid was calculated. Charge-transfer complexes were assumed to be partial electrovalent compounds with organic dative ions D(+) and A(-) (in the excited state) and attempts had been made to correlate the energy changes for the formation of the complexes with the energy changes for the formation of electrovalent compounds between M(+) and X(-) ions.


Assuntos
Acetonitrilas/química , Benzoquinonas/química , Cloranila/química , Elétrons , Etilenos/química , Isoniazida/química , Modelos Teóricos , Nitrilas/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...