Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398078

RESUMO

Diastolic dysfunction is a key feature of the aging heart. We have shown that late-life treatment with mTOR inhibitor, rapamycin, reverses age-related diastolic dysfunction in mice but the molecular mechanisms of the reversal remain unclear. To dissect the mechanisms by which rapamycin improves diastolic function in old mice, we examined the effects of rapamycin treatment at the levels of single cardiomyocyte, myofibril and multicellular cardiac muscle. Compared to young cardiomyocytes, isolated cardiomyocytes from old control mice exhibited prolonged time to 90% relaxation (RT 90 ) and time to 90% Ca 2+ transient decay (DT 90 ), indicating slower relaxation kinetics and calcium reuptake with age. Late-life rapamycin treatment for 10 weeks completely normalized RT 90 and partially normalized DT 90 , suggesting improved Ca 2+ handling contributes partially to the rapamycin-induced improved cardiomyocyte relaxation. In addition, rapamycin treatment in old mice enhanced the kinetics of sarcomere shortening and Ca 2+ transient increase in old control cardiomyocytes. Myofibrils from old rapamycin-treated mice displayed increased rate of the fast, exponential decay phase of relaxation compared to old controls. The improved myofibrillar kinetics were accompanied by an increase in MyBP-C phosphorylation at S282 following rapamycin treatment. We also showed that late-life rapamycin treatment normalized the age-related increase in passive stiffness of demembranated cardiac trabeculae through a mechanism independent of titin isoform shift. In summary, our results showed that rapamycin treatment normalizes the age-related impairments in cardiomyocyte relaxation, which works conjointly with reduced myocardial stiffness to reverse age-related diastolic dysfunction.

2.
Curr Res Physiol ; 5: 171-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356048

RESUMO

Background: The cGMP-dependent protein kinase G (PKG) phosphorylates the cardiac ryanodine receptor (RyR2) in vitro. We aimed to determine whether modulation of endogenous PKG alters RyR2-mediated spontaneous Ca2+ release and whether this effect is linked to a change in RyR2 phosphorylation. Methods: & Results: Human embryonic kidney (HEK293) cells with inducible RyR2 expression were treated with the cGMP analogue 8-Br-cGMP (100 µM) to activate endogenous PKG. In cells transfected with luminal Ca2+ sensor, D1ER, PKG activation significantly reduced the threshold for RyR2-mediated spontaneous Ca2+ release (93.9 ± 0.4% of store size with vehicle vs. 91.7 ± 0.8% with 8-Br-cGMP, P = 0.04). Mutation of the proposed PKG phosphorylation sites, S2808 and S2030, either individually or as a combination, prevented the decrease in Ca2+ release threshold induced by endogenous PKG activation. Interestingly, despite a functional dependence on expression of RyR2 phosphorylation sites, 8-Br-cGMP activation of PKG did not promote a detectable change in S2808 phosphorylation (P = 0.9). Paradoxically, pharmacological inhibition of PKG with KT 5823 (1 µM) also reduced the threshold for spontaneous Ca2+ release through RyR2 without affecting S2808 phosphorylation. Silencing RNA knockdown of endogenous PKG expression also had no quantifiable effect on RyR2 S2808 phosphorylation (P = 0.9). However, unlike PKG inhibition with KT 5823, PKG knockdown did not alter spontaneous Ca2+ release propensity or luminal Ca2+ handling. Conclusion: In an intact cell model, activation of endogenous PKG reduces the threshold for RyR2-mediated spontaneous Ca2+ release in a manner dependent on the RyR2 phosphorylation sites S2808 and S2030. This study clarifies the regulation of RyR2 Ca2+ release by endogenous PKG and functionally implicates the role of RyR2 phosphorylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...