Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(27): 5307-5313, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38938084

RESUMO

The structural arrangements of α-keto acid complexes hold significant interest across various fields of chemistry such as enzyme modeling, drug design, or polymer blending. Herein, we report mass-selective infrared (IR) spectra of pyruvic acid monomers and dimers in the range 1720-1820 cm-1 recorded in helium nanodroplets at 0.37 K. The monomer features IR bands at 1807.1 and 1734.5 cm-1, which are assigned to the carboxylic and ketonic C═O stretching vibrations, respectively. Furthermore, the pyruvic acid dimers generated inside the helium nanodroplets are characterized by carboxylic and ketonic C═O stretch vibrations appearing at 1799.2 and 1737.0 cm-1, respectively. This frequency shift of ±7 cm-1 for both C═O stretching bands from the monomer to the dimer demonstrates that the structural motif of the monomer is maintained upon dimer aggregation in helium nanodroplets. The structural assignments were supported by a comparison of the MP2/aug-cc-pVDZ-predicted harmonic vibrational spectra at the C═O stretching region with the experiments. The global minimum monomer structure with an intramolecular hydrogen bond and its dimer stabilized by both inter- and intramolecular hydrogen bonding interactions reproduce the experimental spectra from the monomer and dimer. This assigned dimer structure lies ca.11 kJ/mol above the corresponding global minimum and is favored in helium nanodroplets due to the long-range realignment of molecules via dipole-dipole interaction, followed by short-range stabilization upon intermolecular hydrogen bond formation. The barrier for reconfiguration of the precooled monomer conformer leading to the formation of the most stable dimer structure is around 58 kJ/mol, which is infeasible at 0.37 K.

2.
Med Res Arch ; 10(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36382204

RESUMO

Neurological manifestations of scrub typhus, a re-emerging infectious disease of tropic/subtropics caused by Orientia tsutsugamushi infection, have been ever-evolving. Several central nervous system infections have been acknowledged for the development of cerebral venous sinus thrombosis (CVT). Nevertheless, CVT has been a rarely described addendum to the ever-evolving "neuro-scrub" spectrum. Proposed pathogenesis for the development of CVT is disseminated endotheliitis resulting in the triad of venous stasis (due to raised intracranial pressure), cerebral vasculopathy (endothelial damage), and capillary perivasculitis (endothelial damage and resultant hypercoagulable state generated by inflammatory mediators). We herein report a case of a previously healthy young female from the Indian subcontinent who was diagnosed with CVT, following scrub typhus. She responded well to conventional therapy with antibiotics and anticoagulants. CVT is amid the few completely reversible neurological catastrophes if diagnosed and treated early. Again, scrub typhus infection is treated with commonly available and extremely "affordable" antibiotics therapy. Hence, the authors propose that all cases of acute febrile illness with neurological manifestations from scrub-typhus endemic zones (like several parts of India) should be tested for the presence of Orientia tsutsugamushi infection and treated accordingly.

3.
Chem Sci ; 13(44): 13187-13200, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425505

RESUMO

Despite longstanding interest in the mechanism of salt dissolution in aqueous media, a molecular level understanding remains incomplete. Here, cryogenic ion trap vibrational action spectroscopy is combined with electronic structure calculations to track salt hydration in a gas phase model system one water molecule at a time. The infrared photodissociation spectra of microhydrated lithium dihalide anions [LiXX'(H2O) n ]- (XX' = I2, ClI and Cl2; n = 1-3) in the OH stretching region (3800-2800 cm-1) provide a detailed picture of how anion polarizability influences the competition among ion-ion, ion-water and water-water interactions. While exclusively contact ion pairs are observed for n = 1, the formation of solvent-shared ion pairs, identified by markedly red-shifted OH stretching bands (<3200 cm-1), originating from the bridging water molecules, is favored already for n = 2. For n = 3, Li+ reaches its maximum coordination number of four only in [LiI2(H2O)3]-, in accordance with the hard and soft Lewis acid and base principle. Water-water hydrogen bond formation leads to a different solvent-shared ion pair motif in [LiI2(H2O)3]- and network formation even restabilizes the contact ion pair motif in [LiCl2(H2O)3]-. Structural assignments are exclusively possible after the consideration of anharmonic effects. Molecular dynamics simulations confirm that the significance of large amplitude motion (of the water molecules) increases with increasing anion polarizability and that needs to be considered already at cryogenic temperatures.

4.
Chemphyschem ; 22(11): 1036-1041, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33783947

RESUMO

The vibrational spectroscopy of lithium dichloride anions microhydrated with one to three water molecules, [LiCl2 (H2 O)1-3 ]- , is studied in the OH stretching region (3800-2800 cm-1 ) using isomer-specific IR/IR double-resonance population labelling experiments. The spectroscopic fingerprints of individual isomers can only be unambiguously assigned after anharmonic effects are considered, but then yield molecular level insight into the onset of salt dissolution in these gas phase model systems. Based on the extent of the observed frequency shifts ΔνOH of the hydrogen-bonded OH stretching oscillators solvent-shared ion pair motifs (<3200 cm-1 ) can be distinguished from intact-core structures (>3200 cm-1 ). The characteristic fingerprint of a water molecule trapped directly in-between two ions of opposite charge provides an alternative route to evaluate the extent of ion pairing in aqueous electrolyte solutions.

5.
Phys Chem Chem Phys ; 21(4): 1820-1829, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30628616

RESUMO

Polycyclic aromatic hydrocarbons (PAH) and their derivatives are prospective carriers of unidentified infrared (UIR) emission features observed in interstellar media. Fluoranthene (C16H10) is a simple planar PAH with five- and six-membered rings; it can be considered as a fragment of C60, which, along with its cationic counterpart, has been identified in interstellar media. Protonated fluoranthene, C16H11+, was generated upon electron bombardment during deposition at 3.2 K of p-H2 containing fluoranthene in a small proportion. The intensities of infrared features of C16H11+ decreased after maintaining the matrix in darkness because of its neutralization with trapped electrons. According to the correlations in intensities upon neutralization and secondary photolysis, observed lines were classified into three groups which are assigned to isomers 3-C16H11+, 9-C16H11+, and 10-C16H11+. Experimental vibrational wavenumbers and relative IR intensities of the features agree with corresponding calculated values predicted for these three isomers of C16H11+ with the B3PW91/6-311++G(2d,2p) method. 3-C16H11+ and 9-C16H11+ are predicted to have the lowest energy (within 5 kJ mol-1), whereas 10- and 1-C16H11+ are lying above the global minimum 3-C16H11+ by ∼20 kJ mol-1. However, definitive identification of 1-C16H11+ could not be made as only the most intense line is tentatively assigned. Although the observed spectra of these isomers match unsatisfactorily with the UIR bands, they will facilitate the potential terrestrial and extraterrestrial identification of these species.

6.
J Chem Phys ; 144(24): 244309, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369517

RESUMO

Two electronic transitions at 512.3 and 250 nm of linear-C5H(+) are detected following mass-selective deposition of m/z = 61 cations into a 6 K neon matrix and assigned to the 1 (1)Π←X (1)Σ(+) and 1 (1)Σ(+)←X (1)Σ(+) systems. Five absorption systems of l-C5H with origin bands at 528,7, 482.6, 429.0, 368.5, and 326.8 nm are observed after neutralization of the cations in the matrix and identified as transitions from the X (2)Π to 1 (2)Δ, 1 (2)Σ (-), 1 (2)Σ(+), 2 (2)Π, and 3 (2)Π electronic states. The assignment to specific structures is based on calculated excitation energies, vibrational frequencies in the electronic states, along with simulated Franck-Condon profiles.

7.
Angew Chem Int Ed Engl ; 55(10): 3424-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26845059

RESUMO

Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass-selected deposition of C13 H9 (+) ions (m/z=165) produced from fluorene in a hot-cathode discharge ion source. The benz[f]indenylium (BfI(+) : 538 nm), fluorenylium (FL9(+) : 518 nm), and phenalenylium (PHL(+) : 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 (1) B2 ←X̃ (1) A1 absorption of FL9(+) , and the 490 nm band is the 2 (2) A2 ←X̃ (2) B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 (1) A1 ←X̃ (1) A1 and 1 (2) A2 ←X̃ (2) A2 transitions of BfI(+) and BfI. The 392 nm band is the 1 (1) E'←X̃ (1) A1 ' transition of PHL(+). The electronic spectra of C13 H9 (+) /C13 H9 were assigned on the basis of the vertical excitation energies calculated with SAC-CI and MS-CASPT2 methods.

8.
Angew Chem Int Ed Engl ; 55(1): 228-31, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26593635

RESUMO

The fulvenallenyl radical was produced in 6 K neon matrices after mass-selective deposition of C7H5(-) and C7H5(+) generated from organic precursors in a hot cathode ion source. Absorption bands commencing at λ=401.3 nm were detected as a result of photodetachment of electrons from the deposited C7H5(-) and also by neutralization of C7H5(+) in the matrix. The absorption system is assigned to the 1 (2)B1 ←X (2)B1 transition of the fulvenallenyl radical on the basis of electronic excitation energies calculated with the MS-CASPT2 method. The vibrational excitation bands detected in the spectrum concur with the structure of the fulvenallenyl radical. Employing DFT calculations, it is found that the fulvenallenyl anion and its radical are the global minima on the potential energy surface among plausible structures of C7H5.

9.
J Chem Phys ; 143(8): 084312, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328848

RESUMO

The electronic transitions of 9-fluorenone FL(+) and 2,3,6,7-dibenzotropone DBT(+) cations were detected in 6 K neon matrices following a mass-selective deposition. The absorptions at 649.2 and 472.2 nm are assigned to the 2 (2)B1←X̃(2)A2 FL(+) and 2(2)A(')←X̃(2)A(') DBT(+) transitions. Absorption spectra of protonated 9-fluorenone H(+)-FL and 2,3,6,7-dibenzotropone H(+)-DBT have also been measured. Protonation of the oxygenated polycyclic aromatic hydrocarbons is carried out in a hot cathode source via in situ produced protonated ethanol. Vibrationally resolved absorptions commencing at 423.3 nm of H-FL(+) and two band systems of H-DBT(+) with origins at 502.4 and 371.5 nm are assigned to the 2(1)A(')←X̃(1)A(') electronic transition of 9-hydroxy-fluorenyl cation and 1 (1)A←X̃(1)A, 2 (1)A←X̃(1)A of 2,3,6,7-dibenzocycloheptenol cation. The assignments are based on vertical excitation energy calculations with time dependent density functional theory, symmetry adapted cluster configuration interaction, and MS-CASPT2 methods.

10.
J Phys Chem A ; 119(11): 2338-43, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25180760

RESUMO

Two absorption systems of C5H3(+) starting at 350 and 345 nm were detected following mass-selective deposition of m/e = 63 ions in a 6 K neon matrix. These are assigned to the 1 (1)A1 ← X (1)A1 electronic transition of 1,2,3,4-pentatetraenylium H2CCCCCH(+) (isomer B(+)) and 1 (1)B2 ← X (1)A1 of penta-1,4-diyne-3-ylium HCCCHCCH(+) (C(+)). The absorptions of neutral C5H3 isomers with onsets at 434.5, 398.3, 369.0, and 267.3 nm are also detected. The first two systems are assigned to the 1 (2)B1 ← X (2)B1 and 1 (2)A2 ← X (2)B1 transitions of isomer B and C, respectively, and the latter two to ethynylcyclopropenyl (A) and 3-vinylidenecycloprop-1-enyl (D) radicals. The structural assignments are based on the adiabatic excitation energies calculated with the MS-CASPT2 method. A vibrational analysis of the electronic spectra, based on the calculated harmonic frequencies, supports this.

11.
J Phys Chem A ; 119(1): 50-5, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25495044

RESUMO

Three absorption systems with origins at 354, 497, and 528 nm were detected after mass-selected deposition of H2C6O(+) in a 6 K neon matrix. The ions were formed by the reaction of C2O with HC4H(+) in a mixture of C3O2 and diacetylene in a hot cathode source, or by dissociative ionization of tetrabromocyclohexadienone. The 497 and 354 nm systems are assigned to the 1(2)A″ ← X(2)A″ and 2(2)A″ ← X(2)A″ electronic transitions of B(+), (2-ethynylcycloallyl)methanone cation, and the 528 nm absorption to the 1(2)A2 ← X(2)B1 transition of F(+), 2-ethynylbut-3-yn-1-enone-1-ylide, on the basis of calculated excitation energies with CASPT2.

12.
Phys Chem Chem Phys ; 16(15): 7023-30, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24603977

RESUMO

Mass selective deposition of C7H3(+) (m/z = 87) into solid neon reveals the 1(1)A1←X(1)A1 electronic absorption system of hepta-1,2,3,4,5,6-heptahexaenylium cation B(+) [H2CCCCCCCH](+) with an origin band at 441.3 nm, 1(1)A'←X(1)A' transition of 2,4-pentadiynylium,1-ethynyl cation C(+) [HCCCHCCCCH](+) starting at 414.6 nm and the 1(1)A1←X(1)A1 one of cyclopropenylium,1,3-butadiynyl cation A(+) [HCCCCC<(CH=CH)](+) with an onset at 322.2 nm. Vibrationally resolved fluorescence was observed for isomer B(+) upon laser excitation of the absorption bands in the 1(1)A1←X(1)A1 transition. After neutralization of the cations in the matrix five absorption systems of the C7H3 neutral radicals starting at 530.3, 479.4, 482.3, 325.0 and 302.5 nm were detected. These were identified as the 1(2)A'←X(2)A' and 2(2)A'←X(2)A' electronic transitions of 2-(buta-1,3-diynyl)cycloprop-2yl-1-1ylidene E˙ [HCCCCC<(C=CH2)]˙, 1(2)B1←X(2)B1 of 1,2,3,4,5,6-heptahexaenyl B˙ [H2CCCCCCCH]˙, 3(2)B1←X(2)B1 of 3-buta-1,3-diynyl-cyclopropenyl A˙ [HCCCCC<(CH=CH)]˙ and 2(2)B1←X(2)A2 transition of 1,2-divinylidene-cyclopropanyl radical F˙ [HCC-cyc-(CCHC)-CCH]˙, respectively. The assignment is based on calculated vertical excitation energies using the CASPT2 method. Comparison of the calculated harmonic vibrational frequencies with those inferred from the spectra supports the assignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...