Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(32): 14969-14980, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072652

RESUMO

While metal-ligand cooperativity is well-known, studies on element-ligand cooperativity involving main group species are comparatively much less explored. In this study, we computationally designed a few geometrically constrained borylenes supported by different carbenes. Our density functional theory studies indicate that they possess enhanced nucleophilicity as well as electrophilicity, thus rendering them promising candidates for exhibiting borylene-ligand cooperativity. The cooperation between the boron and adjacent carbene centers facilitates different bond activation processes, including the cycloaddition of acetylene across the boron-carbene bond as well as B-H/Si-H bond activation reactions, which have been analyzed in detail. To the best of our knowledge, the borylenes proposed in this study represent the first examples of theoretically proposed geometrically constrained bis(carbene)-stabilized borylenes capable of cooperative activation of enthalpically strong bonds.

2.
J Mater Chem B ; 12(32): 7848-7857, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38808376

RESUMO

Cellular stress is a crucial factor in regulating and maintaining both organismal and microenvironmental homeostasis. It induces a response that also affects the micropolarity of specific cellular compartments, which is essential for early disease diagnosis. In this contribution, we present a quantitative study of micropolarity changes inside the endoplasmic reticulum (ER) during the G1/S and G2/M phases, using a biocompatible small-molecule fluorophore called ER-Oct. This probe is selectively driven to the ER by its hydrophobicity, and it has the fastest diffusion properties among a series of analogous probes. We found that induced ER stress caused cell cycle arrests leading to an increase in ER micropolarity which is well supported by lambda scanning experiments and fluorescence lifetime imaging microscopy (FLIM) as well. ER-Oct is a versatile staining agent that could effectively stain the ER in various living/fixed mammalian cells, isolated ER, Caenorhabditis elegans, and mice tissues. Furthermore, we used this probe to visualize a well-known biological event, ER to Golgi transport, by live-cell fluorescence microscopy. Our exhaustive investigation of micropolarity using ER-staining dye provides a new way to study ER stress, which could provide a deeper understanding of proteostasis in model systems and even in fixed patient samples.


Assuntos
Caenorhabditis elegans , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Complexo de Golgi , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Animais , Complexo de Golgi/metabolismo , Complexo de Golgi/efeitos dos fármacos , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Caenorhabditis elegans/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Microscopia de Fluorescência
3.
Angew Chem Int Ed Engl ; 62(41): e202310603, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610555

RESUMO

Triazoles are an important class of compounds with widespread applications. Functionalization of the triazole backbone is thus of significant interest. In comparison to 1,2,3-triazoles, C-H activation-functionalization of the congeners 1,2,4-triazoles is surprisingly underdeveloped. Indeed, no such C-H activation-functionalization has been reported for 4-substituted 1,2,4-triazole cores. Furthermore, although denitrogenative ring-opening of 1,2,3-triazoles is well-explored, 1,2,4-triazole/triazolium substrates have not been known to exhibit N-N bond-cleaving ring-opening reactivity so far. In this work, we unveiled an unusual hidden reactivity of the 1,2,4-triazole backbone involving the elusive N-N bond-cleaving ring-opening reaction. This new reactivity was induced by a Satoh-Miura-type C-H activation-annulation at the 1,2,4-triazole motif appended with a pyridine directing group. This unique reaction allowed ready access to a novel class of unsymmetrically substituted 2,2'-dipyridylamines, with one pyridine ring fully-substituted with alkyl groups. The unsymmetrical 2,2'-dipyridylamines were utilized to access unsymmetrical boron-aza-dipyridylmethene fluorescent dyes. Empowered with desirable optical/physical properties such as large Stokes shifts and suitable hydrophobicity arising from optimal alkyl chain length at the fully-substituted pyridine-ring, these dyes were used for intracellular lipid droplet-selective imaging studies, which provided useful information toward designing suitable lipid droplet-selective imaging probes for biomedical applications.

4.
Inorg Chem ; 62(23): 9063-9076, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37265319

RESUMO

Computational investigations were carried out using density functional theory (ωB97XD(toluene)/6-311+G*) on a series of base-stabilized borylenes to understand their ligand properties and potential toward the activation of enthalpically strong E-H bonds (E = H, NH2, SiH2Ph, and CH3) as well as binding with small molecules such as CO and CNMe. The calculated reaction free energies and activation barriers suggest the ability of hitherto unexplored carbene-stabilized borylenes to not only split such bonds but also bind with CO and CNMe. A detailed mechanistic study of these bond activation processes reveals the noninnocent behavior of the carbene moiety attached to the boron center, thereby leading to cooperative splitting of the bonds of interest. The binding of CO and CNMe to the base-stabilized borylenes was investigated by energy decomposition analysis (EDA) with natural orbitals for chemical valence (NOCV), which gave appreciable interaction energy (ΔEint) values, thereby indicating strong binding of CO and CNMe to these borylenes.

5.
Anal Chem ; 95(15): 6341-6350, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37014217

RESUMO

The design and development of optical probes for sensing neurotoxic amyloid fibrils are active and important areas of research and are undergoing continuous advancements. In this paper, we have synthesized a red emissive styryl chromone-based fluorophore (SC1) for fluorescence-based detection of amyloid fibrils. SC1 records exceptional modulation in its photophysical properties in the presence of amyloid fibrils, which has been attributed to the extreme sensitivity of its photophysical properties toward the immediate microenvironment of the probe in the fibrillar matrix. SC1 also shows very high selectivity toward the amyloid-aggregated form of the protein as compared to its native form. The probe is also able to monitor the kinetic progression of the fibrillation process, with comparable efficiency as that of the most popular amyloid probe, Thioflavin-T. Moreover, the performance of SC1 is least sensitive to the ionic strength of the medium, which is an advantage over Thioflavin-T. In addition, the molecular level interaction forces between the probe and the fibrillar matrix have been interrogated by molecular docking calculations which suggest the binding of the probe to the exterior channel of the fibrils. The probe has also been demonstrated to sense protein aggregates from the Aß-40 protein, which is known to be responsible for Alzheimer's disease. Moreover, SC1 exhibited excellent biocompatibility and exclusive accumulation at mitochondria which allowed us to successfully demonstrate the applicability of this probe to detect mitochondrial-aggregated protein induced by an oxidative stress indicator molecule 4-hydroxy-2-nonenal (4-HNE) in A549 cell lines as well as in a simple animal model like Caenorhabditis elegans. Overall, the styryl chromone-based probe presents a potentially exciting alternative for the sensing of neurotoxic protein aggregation species both in vitro as well as in vivo.


Assuntos
Doença de Alzheimer , Amiloide , Animais , Amiloide/química , Agregados Proteicos , Caenorhabditis elegans/metabolismo , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides/química , Proteínas Amiloidogênicas , Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Cromonas , Lipídeos
6.
ACS Appl Mater Interfaces ; 14(50): 55957-55970, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36479867

RESUMO

Light, as an external stimulus, has begun to engage a phenomenal role in the diverse field of science. Encouraged by recent progress from biology to materials chemistry, various light-responsive fluorescent probes have been developed. Herein, we present a 1,8-naphthalimide-based probe NIT-NO2 capable of releasing nitric oxide (NO) along with the formation of fluorescent organic nanoparticles (FONs) upon exposure to near-visible UV light. By synthesizing the photoproduct NIT-OH, we unveiled that initially NIT-NO2 released NO and converted to NIT-OH, while prolonged irradiation led to the formation of FONs that is corroborated by the red-edge excitation shift as well as microscopic investigation. Finally, we have successfully applied NIT-NO2 and NIT-OH for specific labeling of lipid droplets and plasma membranes, respectively, and demonstrated the switching from lipid droplets to plasma membranes by using light as a stimulus. These two probes show unique imaging applications inside the cells depending on the polarity and hydrophobicity of the environment. This work paves a fascinating way for the generation of excitation-dependent FONs from a small organic fluorophore and highlights its potency as an exclusive imaging tool.


Assuntos
Corantes Fluorescentes , Nanopartículas , Óxido Nítrico , Dióxido de Nitrogênio , Gotículas Lipídicas
7.
J Mater Chem B ; 10(26): 5071-5085, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730682

RESUMO

The global burden of liver damage and renal failure necessitates technology-aided evolution towards point-of-care (POC) testing of metabolic markers. Hence in the prevalence of current health conditions, achieving on-site detection and quantifying serum albumin (SA) can contribute significantly to halting the increased mortality and morbidity rate. Herein, we have rationally designed and synthesized far-red emitting, solvatofluorochromic styryl chromone (SC) derivatives SC1 and SC2, and SC2-conjugated fluorescent magnetic nanoparticles (SCNPs) for sensing SA with a fluorogenic response via interacting at an atypical drug binding site. In solution, the highly sensitive and selective fluorogenic response was evaluated by the prominent amplification and blue-shift in the emission maxima of the probes from deep red to dark yellow through an intermediate orange emission. The transformation of the fluorogen into a fluorophore was manifested through spectroscopic measurements. The stabilization of the probes at protein pockets was ascribed to the non-covalent interactions, such as H-bonding, cation-π, and hydrophobic interactions, as unveiled by docking studies. The practical applications revealed the novelty of SC derivatives through (a) the capability to detect SA isolated from real blood samples via a turn-on fluorescence response; (b) the design of a simple, cheap, and portable test-strip using a glass-slide loaded with solid-state emissive SC2, which provided differential emission color of the SC2-HSA complex in solution and the solid-state with increasing concentration of HSA. Moreover, a smartphone-based color analysis application was employed to obtain the ratio of green and red (G/R) channels, which was utilized for quantitative detection of HSA; (c) the biocompatibility of the SC1 was ascertained through confocal laser scanning microscopic imaging (CLSM). Detailed investigation showed that SC1 could entirely localize in the mitochondria and evolve as a promising biomarker for distinguishing cancer cells from normal cells. Additionally, the validation of uncommon binding of SC1 and SC2 between domains I and III was determined using competition experiments with a known site-specific binder and molecular docking studies. This unique property of the probes can be further exploited to understand the cellular intake of HSA-drug complexes in the multifaceted biological system. These results find the utility of SC derivatives as small molecule-based chemosensors for at-home SA detection and as a biomarker for cancer.


Assuntos
Cromonas , Nanoconjugados , Corantes Fluorescentes/química , Simulação de Acoplamento Molecular , Albumina Sérica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA