Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114515, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003743

RESUMO

Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.

2.
Physiol Mol Biol Plants ; 29(12): 1825-1850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38222286

RESUMO

The recent thrust in research has projected the type II clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR-Cas9) system as an avant-garde plant genome editing tool. It facilitates the induction of site-specific double-stranded DNA cleavage by the RNA-guided DNA endonuclease (RGEN), Cas9. Elimination, addition, or alteration of sections in DNA sequence besides the creation of a knockout genotype (CRISPRko) is aided by the CRISPR-Cas9 system in its wild form (wtCas9). The inactivation of the nuclease domain generates a dead Cas9 (dCas9), which is capable of targeting genomic DNA without scissoring it. The dCas9 system can be engineered by fusing it with different effectors to facilitate transcriptional activation (CRISPRa) and transcriptional interference (CRISPRi). CRISPR-Cas thus holds tremendous prospects as a genome-manipulating stratagem for a wide gamut of crops. In this article, we present a brief on the fundamentals and the general workflow of the CRISPR-Cas system followed by an overview of the prospects of bioinformatics in propelling CRISPR-Cas research with a special thrust on the available databases and algorithms/web-accessible applications that have aided in increasing the usage and efficiency of editing. The article also provides an update on the current regulatory landscape in different countries on the CRISPR-Cas edited plants to emphasize the far-reaching impact of the genomic editing technology. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01397-3.

3.
PLOS Glob Public Health ; 2(8): e0000890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962798

RESUMO

We wished to determine whether rare diseases patients from India had been enrolled in international trials to develop novel orphan drugs. There are two reasons to be interested in this. (a) Different ethnic or racial groups may respond differently to a particular drug. India has huge ethnic diversity, and to exclude such participants is to severely limit the diversity of any trial; (b) Even if a suitable drug for a rare disease is available in India, it may be astronomically priced, in a country where most healthcare expenditure is out-of-pocket. We identified 63 orphan drugs, approved by the US Food and Drug Administration (FDA) after 2008, for which there were 202 trials in the US government's clinical trial registry, ClinicalTrials.gov. Only nine of these trials had run in India. These trials pertained to six drugs. The drugs were for the conditions B-cell Lymphoma, Chronic Myeloid Leukemia, Gaucher disease Type 1, Malaria, Myeloma and Pulmonary Arterial Hypertension. Further research is required as to why patients from India are not part of foreign drug development programmes for rare diseases. We then asked how many of the remaining 193 trials had recruited people of Indian origin, residing in other countries, and found that not more than 1% of these trials had done so. Also, only 11 of the 193 trials had recruited from other lower income countries. Participation from low-income countries in trials for orphan drugs is poor.

4.
J Mol Model ; 27(3): 97, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33641023

RESUMO

The spread of novel coronavirus SARS-CoV-2 has directed to a state of an unprecedented global pandemic. Many synthetic compounds and FDA-approved drugs have been significantly inhibitory against the virus, but no SARS-CoV-2 solution has been identified. However, small molecule fragment-based derivatives of potent phytocompounds may serve as promising inhibitors against SARS-CoV-2. In the pursuit of exploring novel SARS-CoV-2 inhibitors, we generated small molecule fragment derivatives from potent phytocompounds using neural networking and machine learning-based tools, which can cover unexplored regions of the chemical space that still retain lead-like properties. Out of 300 derivative molecules from withaferin-A, hesperidin, and baicalin, 30 were screened out with synthetic accessibility scores > 4 having the best ADME properties. The withaferin-A derivative molecules 61 and 64 exhibited a significant binding affinity of - 7.84 kcal/mol and - 7.94 kcal/mol. The docking study reveals that withaferin-A mol 61 forms 5 polar H-bonds with the Mpro where amino acids involved are GLU166, THR190, CYS145, MET165, and GLN152 and upon QSAR analysis showed a minimal predicted IC50 value of 7762.47 nM. Furthermore, the in silico cytotoxicity predictions, pharmacophore modeling, and molecular dynamics simulation studies have resulted in predicting the highly potent small molecule derivative from withaferin-A (phytocompound from Withania somnifera) to be the potential inhibitor of SARS-CoV 2 protease (Mpro) and a promising future lead candidate against COVID-19. The rationale of choosing withaferin-A from Withania somnifera (Ashwagandha) was propelled by the innumerous applications of Ashwagandha for the treatment of various antiviral diseases, common cold, and fever since time immemorial. Graphical abstract.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Vitanolídeos/farmacologia , Antivirais/química , Sítios de Ligação , COVID-19/virologia , Linhagem Celular , Linhagem Celular Tumoral , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Ligação Proteica , SARS-CoV-2/metabolismo , Relação Estrutura-Atividade , Vitanolídeos/química , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...