Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636658

RESUMO

Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins, Rv1636 and MSMEG_3811 in Mycobacterium tuberculosis and Mycobacterium smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of "bound" cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we found that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a "sponge" for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial "free" pool of cAMP.


Assuntos
Proteínas de Bactérias , AMP Cíclico , Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Viabilidade Microbiana , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Ligação Proteica
2.
Biomater Sci ; 9(16): 5508-5518, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232245

RESUMO

Polyampholyte hydrogels are attractive materials for tissue engineering scaffolds as they offer a wide variety of features including nonfouling, selective protein delivery, and tunable physical characteristics. However, to improve the potential performance of these materials for in vivo applications, there is a need for a higher diversity of zwitterionic cross-linker species to replace commonly used ethylene glycol (EG) based chemistries. Towards this end, the synthesis of a dipeptide based zwitterionic cross-linker, N-Ser-Ser-C dimethacrylate (S-S) from N-Boc-l-serine is presented. The strategy utilized a convergent coupling of methacrylated serine partners followed by careful global deprotection to yield the zwitterionic cross-linker with good overall yields. This novel cross-linker was incorporated into a polyampholyte hydrogel and its physical properties and biocompatibility were compared against a polyampholyte hydrogel synthesized with an EG-based cross-linker. The S-S cross-linked hydrogel demonstrated excellent nonfouling performance, while promoting enhanced cellular adhesion to fibrinogen delivered from the hydrogel. Therefore, the results suggest that the S-S cross-linker will demonstrate superior future performance for in vivo applications.


Assuntos
Hidrogéis , Alicerces Teciduais , Adesão Celular , Hidrogel de Polietilenoglicol-Dimetacrilato , Engenharia Tecidual
3.
Front Mol Biosci ; 8: 599221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012976

RESUMO

Millions of deaths caused by Mycobacterium tuberculosis (Mtb) are reported worldwide every year. Treatment of tuberculosis (TB) involves the use of multiple antibiotics over a prolonged period. However, the emergence of resistance leading to multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) is the most challenging aspect of TB treatment. Therefore, there is a constant need to search for novel therapeutic strategies that could tackle the growing problem of drug resistance. One such strategy could be perturbing the functions of novel targets in Mtb, such as universal stress protein (USP, Rv1636), which binds to cAMP with a higher affinity than ATP. Orthologs of these proteins are conserved in all mycobacteria and act as "sink" for cAMP, facilitating the availability of this second messenger for signaling when required. Here, we have used the cAMP-bound crystal structure of USP from Mycobacterium smegmatis, a closely related homolog of Mtb, to conduct a structure-guided hunt for potential binders of Rv1636, primarily employing molecular docking approach. A library of 1.9 million compounds was subjected to virtual screening to obtain an initial set of ~2,000 hits. An integrative strategy that uses the available experimental data and consensus indications from other computational analyses has been employed to prioritize 22 potential binders of Rv1636 for experimental validations. Binding affinities of a few compounds among the 22 prioritized compounds were tested through microscale thermophoresis assays, and two compounds of natural origin showed promising binding affinities with Rv1636. We believe that this study provides an important initial guidance to medicinal chemists and biochemists to synthesize and test an enriched set of compounds that have the potential to inhibit Mtb USP (Rv1636), thereby aiding the development of novel antitubercular lead candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...