Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Cells Nanomed Biotechnol ; 52(1): 46-58, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156875

RESUMO

Novel magnetic and metallic nanoparticles garner much attention of researchers due to their biological, chemical and catalytic properties in many chemical reactions. In this study, we have successfully prepared a core-shell Fe3O4@SiO2@PDA nanocomposite wrapped with Ag using a simple synthesis method, characterised and tested on small cell lung cancer and antibacterial strains. Incorporating Ag in Fe3O4@SiO2@PDA provides promising advantages in biomedical applications. The magnetic Fe3O4 nanoparticles were coated with SiO2 to obtain negatively charged surface which is then coated with polydopamine (PDA). Then silver nanoparticles were assembled on Fe3O4@SiO2@PDA surface, which results in the formation core-shell nanocomposite. The synthesised nanocomposite were characterized using SEM-EDAX, dynamic light scattering, XRD, FT-IR and TEM. In this work, we report the anticancer activity of silver nanoparticles against H1299 lung cancer cell line using MTT assay. The cytotoxicity data revealed that the IC50 of Fe3O4@SiO2@PDA@Ag against H1299 lung cancer nanocomposites cells was 21.52 µg/mL. Furthermore, the biological data of nanocomposites against Gram-negative 'Pseudomonas aeruginosa' and Gram-positive 'Staphylococcus aureus' were carried out. The range of minimum inhibitory concentration was found to be 115 µg/mL where gentamicin was used as a standard drug. The synthesized AgNPs proves its supremacy as an efficient biomedical agent and AgNPs may act as potential beneficial molecule in lung cancer chemoprevention and antibacterial strains.


In the present study, we have successfully prepared a core-shell Fe3O4@SiO2@PDA@Ag nanocomposite.We have investigated the dose-dependent cellular toxicity of silver nanocomposite in the nonsmall cell lung cancer cell line H1299 using MTT assay.Also, we have evaluated the mode of cell death using apoptosis.We have also evaluated the bioactivity of AgNPs on both Gram-positive and Gram-negative bacterial cells with highly efficient antibacterial potency.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Nanocompostos , Humanos , Prata/farmacologia , Prata/química , Dióxido de Silício/química , Nanopartículas Metálicas/química , Neoplasias Pulmonares/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Nanocompostos/química , Linhagem Celular
2.
Artigo em Inglês | MEDLINE | ID: mdl-37899589

RESUMO

The increasing burden of cutaneous wound infections with drug-resistant bacteria underlines the dire need for novel treatment approaches. Here, we report the preparation steps, characterization, and antibacterial efficacy of novel chitosan-coated Prussian blue nanoparticles loaded with the photosensitizer fluorescein isothiocyanate-dextran (CHPB-FD). With excellent photothermal and photodynamic properties, CHPB-FD nanoparticles can effectively eradicate both Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa in vitro and in vivo. The antibacterial efficacy of CHPB-FD nanophotonic particles further increases in the presence of white light. Using a bacteria-infected cutaneous wound rat model, we demonstrate that CHPB-FD particles upregulate genes involved in tissue remodeling, promote collagen deposition, reduce unwanted inflammation, and enhance healing. The light-responsive CHPB-FD nanophotonic particles can, therefore, be potentially used as an economical and safe alternative to antibiotics for effectively decontaminating skin wounds and for disinfecting biomedical equipment and surfaces in hospitals and other places.

3.
J Nanobiotechnology ; 20(1): 375, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35953826

RESUMO

Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of "post-antibiotic era". It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Humanos , RNA Viral , SARS-CoV-2
4.
Biomedicines ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740402

RESUMO

The ability of some nanoparticles to mimic the activity of certain enzymes paves the way for several attractive biomedical applications which bolster the already impressive arsenal of nanomaterials to combat deadly diseases. A key feature of such 'nanozymes' is the duplication of activities of enzymes or classes of enzymes, such as catalase, superoxide dismutase, oxidase, and peroxidase which are known to modulate the oxidative balance of treated cells for facilitating a particular biological process such as cellular apoptosis. Several nanoparticles that include those of metals, metal oxides/sulfides, metal-organic frameworks, carbon-based materials, etc., have shown the ability to behave as one or more of such enzymes. As compared to natural enzymes, these artificial nanozymes are safer, less expensive, and more stable. Moreover, their catalytic activity can be tuned by changing their size, shape, surface properties, etc. In addition, they can also be engineered to demonstrate additional features, such as photoactivated hyperthermia, or be loaded with active agents for multimodal action. Several researchers have explored the nanozyme-mediated oxidative modulation for therapeutic purposes, often in combination with other diagnostic and/or therapeutic modalities, using a single probe. It has been observed that such synergistic action can effectively by-pass the various defense mechanisms adapted by rogue cells such as hypoxia, evasion of immuno-recognition, drug-rejection, etc. The emerging prospects of using several such nanoparticle platforms for the treatment of bacterial infections/diseases and cancer, along with various related challenges and opportunities, are discussed in this review.

5.
Indian J Microbiol ; 62(2): 167-174, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462720

RESUMO

Nanotechnology is a novel approach to dermatologic treatment. Nanomaterials are materials typically defined as less than 100 nm in size. As this size approaches molecular dimensions, the chemical and physical properties vastly change due to a relative increase in surface area to volume  ratio. Unique and altered properties ensue, such as carbon becoming an electrical conductant in the nano form, and glass becoming a liquid. The interaction of nanoparticles with biota likewise changes. Novel therapeutics may be possible with the use of nanomaterials. Advantages of nanoparticles include the ability to overcome microbial resistance and potentially induce immunomodulatory effects. Engineered nanomaterials or the development of nano-therapeutics with photo-induced antibacterial propensity and immunomodulatory activities has the potential to open new prospects for the treatment of ubiquitous cutaneous diseases, such as acne vulgaris.

6.
Mater Sci Eng C Mater Biol Appl ; 113: 110982, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487399

RESUMO

We report the synthesis of novel silver-doped Prussian blue nanoscale coordination polymers (SPB NCPs), for dual modality photothermal ablation and oxidative toxicity in bacterial cells. The comparison of SPB NCPs (having Fe-CN-Ag bonds) with the conventionally used Prussian blue nanoscale coordination polymers (PB NCPs, having Fe-CN-Fe bonds) was investigated in terms of their physical and therapeutic properties. It was observed that both PB and SPB NCPs have similar physical dimensions, crystalline phase and optical properties. Both these NCPs showed robust photothermal effect by heat generation (hyperthermia) upon exposure to red laser light. However, among the two, only SPB NCP showed oxidase-like activity by generating H2O2 in aqueous medium, presumably due to its silver content. In vitro antibacterial studies revealed that the SPB NCPs, but not PB NCPs, show inherent toxicity towards bacteria with an IC50 value close to 2.5 µg/ml. It can be inferred that this toxicity is oxidative in nature, as a result of the oxidase-like behaviour shown by SPB NCPs. Furthermore, light activation resulted in substantial additional antibacterial effect (photothermal toxicity) in bacterial cells treated with SPB NCPs. In comparison, marginal additional photothermal toxicity was observed in PB NCP-treated bacteria. Thus, we conclude that the combination of dual modality oxidative and photothermal toxicities demonstrated by SPB NCPs, but not by control PB NCPs, makes the former promising antibacterial agents at low dosages.


Assuntos
Antibacterianos/química , Ferrocianetos/química , Nanoestruturas/química , Polímeros/química , Prata/química , Antibacterianos/farmacologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Luz , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...