Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615937

RESUMO

Recent studies suggest that training of innate immune cells such as tissue-resident macrophages by repeated noxious stimuli can heighten host defense responses. However, it remains unclear whether trained immunity of tissue-resident macrophages also enhances injury resolution to counterbalance the heightened inflammatory responses. Here, we studied lung-resident alveolar macrophages (AMs) prechallenged with either the bacterial endotoxin or with Pseudomonas aeruginosa and observed that these trained AMs showed greater resilience to pathogen-induced cell death. Transcriptomic analysis and functional assays showed greater capacity of trained AMs for efferocytosis of cellular debris and injury resolution. Single-cell high-dimensional mass cytometry analysis and lineage tracing demonstrated that training induces an expansion of a MERTKhiMarcohiCD163+F4/80low lung-resident AM subset with a proresolving phenotype. Reprogrammed AMs upregulated expression of the efferocytosis receptor MERTK mediated by the transcription factor KLF4. Adoptive transfer of these trained AMs restricted inflammatory lung injury in recipient mice exposed to lethal P. aeruginosa. Thus, our study has identified a subset of tissue-resident trained macrophages that prevent hyperinflammation and restore tissue homeostasis following repeated pathogen challenges.


Assuntos
Macrófagos Alveolares , Imunidade Treinada , Animais , Camundongos , Transferência Adotiva , c-Mer Tirosina Quinase/genética , Fagocitose
2.
Proc Natl Acad Sci U S A ; 119(15): e2121098119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377803

RESUMO

The pathogenesis of lung fibrosis involves hyperactivation of innate and adaptive immune pathways that release inflammatory cytokines and growth factors such as tumor growth factor (TGF)ß1 and induce aberrant extracellular matrix protein production. During the genesis of pulmonary fibrosis, resident alveolar macrophages are replaced by a population of newly arrived monocyte-derived interstitial macrophages that subsequently transition into alveolar macrophages (Mo-AMs). These transitioning cells initiate fibrosis by releasing profibrotic cytokines and remodeling the matrix. Here, we describe a strategy for leveraging the up-regulation of the mannose receptor CD206 in interstitial macrophages and Mo-AM to treat lung fibrosis. We engineered mannosylated albumin nanoparticles, which were found to be internalized by fibrogenic CD206+ monocyte derived macrophages (Mo-Macs). Mannosylated albumin nanoparticles incorporating TGFß1 small-interfering RNA (siRNA) targeted the profibrotic subpopulation of CD206+ macrophages and prevented lung fibrosis. The findings point to the potential utility of mannosylated albumin nanoparticles in delivering TGFß-siRNA into CD206+ profibrotic macrophages as an antilung fibrosis strategy.


Assuntos
Linfotoxina-alfa , Macrófagos Alveolares , Nanopartículas , Fibrose Pulmonar , RNA Interferente Pequeno , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Linfotoxina-alfa/genética , Macrófagos Alveolares/imunologia , Receptor de Manose , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/terapia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética
3.
ACS Nano ; 16(3): 4084-4101, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35230826

RESUMO

The complex involvement of neutrophils in inflammatory diseases makes them intriguing but challenging targets for therapeutic intervention. Here, we tested the hypothesis that varying endocytosis capacities would delineate functionally distinct neutrophil subpopulations that could be specifically targeted for therapeutic purposes. By using uniformly sized (∼120 nm in diameter) albumin nanoparticles (ANP) to characterize mouse neutrophils in vivo, we found two subsets of neutrophils, one that readily endocytosed ANP (ANPhigh neutrophils) and another that failed to endocytose ANP (ANPlow population). These ANPhigh and ANPlow subsets existed side by side simultaneously in bone marrow, peripheral blood, spleen, and lungs, both under basal conditions and after inflammatory challenge. Human peripheral blood neutrophils showed a similar duality. ANPhigh and ANPlow neutrophils had distinct cell surface marker expression and transcriptomic profiles, both in naive mice and in mice after endotoxemic challenge. ANPhigh and ANPlow neutrophils were functionally distinct in their capacities to kill bacteria and to produce inflammatory mediators. ANPhigh neutrophils produced inordinate amounts of reactive oxygen species and inflammatory chemokines and cytokines. Targeting this subset with ANP loaded with the drug piceatannol, a spleen tyrosine kinase (Syk) inhibitor, mitigated the effects of polymicrobial sepsis by reducing tissue inflammation while fully preserving neutrophilic host-defense function.


Assuntos
Nanopartículas , Neutrófilos , Albuminas/metabolismo , Animais , Endocitose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Neutrófilos/metabolismo
5.
Cancer Immunol Immunother ; 70(7): 1877-1891, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33394094

RESUMO

The initiation of new blood vessel formation (neo-angiogenesis) is one of the primary requirements for the establishment of tumor. As the tumor grows beyond a certain size, a hypoxic-condition arises in the inner core of tumor, triggering the release of chemokines, which attract T-regulatory (Treg) cells in the tumor-site. The presence of FOXP3, a lineage-specific transcription factor, expressing Treg cells in various types of tumor implements immunosuppressive and tumor-promoting strategies. One such strategy is the invitation of endothelial cells for neo-vascularization in the tumor site. Here we report that as the disease progresses, Treg cells from breast cancer patients are capable of secreting high-amount of VEGFA. The VEGFA promoter lacks Treg-specific transcription factor FOXP3 binding site. FOXP3 in association with locus-specific transcription factor STAT3 binds to VEGFA promoter to induce its transcription in Treg cells obtained from breast cancer patients. Treg cell-secreted VEGFA induces neo-angiogenesis from endothelial cells under in-vitro conditions. Targeting Tregs in mice with breast tumor reduces tumor growth as well as the level of neo-angiogenesis in the tumor tissue.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/patologia , Linfócitos T Reguladores/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Prognóstico , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/metabolismo , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Behav Brain Res ; 398: 112983, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137399

RESUMO

Alzheimer's Disease (AD) is the most prevalent form of dementia globally, and the number of individuals with AD diagnosis is expected to double by 2050. Numerous preclinical AD studies have shown that AD neuropathology accompanies alteration in learning and memory. However, less attention has been given to alterations in metabolism, sleep, and sensorimotor functional outcomes during AD pathogenesis. The objective of this study was to elucidate the extent to which metabolic activity, sleep-wake cycle, and sensorimotor function is impaired in APPSwDI/Nos2-/- (CVN-AD) transgenic mice. Female mice were used in this study because AD is more prevalent in women compared to men. We hypothesized that the presence of AD neuropathology in CVN-AD mice would accompany alterations in metabolic activity, sleep, and sensorimotor function. Our results showed that CVN-AD mice had significantly decreased energy expenditure compared to wild-type (WT) mice. An examination of associated functional outcome parameters showed that sleep activity was elevated during the awake (dark) cycle and as well as an overall decrease in spontaneous locomotor activity. An additional functional parameter, the nociceptive response to thermal stimuli, was also impaired in CVN-AD mice. Collectively, our results demonstrate CVN-AD mice exhibit alterations in functional parameters that resemble human-AD clinical progression.


Assuntos
Doença de Alzheimer/fisiopatologia , Metabolismo Energético/fisiologia , Locomoção/fisiologia , Nociceptividade/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Sensação Térmica/fisiologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Nat Immunol ; 21(11): 1430-1443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839607

RESUMO

Macrophages demonstrate remarkable plasticity that is essential for host defense and tissue repair. The tissue niche imprints macrophage identity, phenotype and function. The role of vascular endothelial signals in tailoring the phenotype and function of tissue macrophages remains unknown. The lung is a highly vascularized organ and replete with a large population of resident macrophages. We found that, in response to inflammatory injury, lung endothelial cells release the Wnt signaling modulator Rspondin3, which activates ß-catenin signaling in lung interstitial macrophages and increases mitochondrial respiration by glutaminolysis. The generated tricarboxylic acid cycle intermediate α-ketoglutarate, in turn, serves as the cofactor for the epigenetic regulator TET2 to catalyze DNA hydroxymethylation. Notably, endothelial-specific deletion of Rspondin3 prevented the formation of anti-inflammatory interstitial macrophages in endotoxemic mice and induced unchecked severe inflammatory injury. Thus, the angiocrine-metabolic-epigenetic signaling axis specified by the endothelium is essential for reprogramming interstitial macrophages and dampening inflammatory injury.


Assuntos
Reprogramação Celular , Metabolismo Energético , Epigênese Genética , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Trombospondinas/genética , Animais , Biomarcadores , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Inflamação/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Trombospondinas/metabolismo
8.
Brain Behav Immun ; 84: 115-131, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778743

RESUMO

Sepsis is a host response to systemic inflammation and infection that may lead to multi-organ dysfunction and eventual death. While acute brain dysfunction is common among all sepsis patients, chronic neurological impairment is prevalent among sepsis survivors. The brain microvasculature has emerged as a major determinant of sepsis-associated brain dysfunction, yet the mechanisms that underlie its associated neuroimmune perturbations and behavioral deficits are not well understood. An emerging body of data suggests that inhibition of tissue-nonspecific alkaline phosphatase (TNAP) enzyme activity in cerebral microvessels may be associated with changes in endothelial cell barrier integrity. The objective of this study was to elucidate the connection between alterations in cerebrovascular TNAP enzyme activity and brain microvascular dysfunction in late sepsis. We hypothesized that the disruption of TNAP enzymatic activity in cerebral microvessels would be coupled to the sustained loss of brain microvascular integrity, elevated neuroinflammatory responses, and behavioral deficits. Male mice were subjected to cecal ligation and puncture (CLP), a model of experimental sepsis, and assessed up to seven days post-sepsis. All mice were observed daily for sickness behavior and underwent behavioral testing. Our results showed a significant decrease in brain microvascular TNAP enzyme activity in the somatosensory cortex and spinal cord of septic mice but not in the CA1 and CA3 hippocampal regions. Furthermore, we showed that loss of cerebrovascular TNAP enzyme activity was coupled to a loss of claudin-5 and increased perivascular IgG infiltration in the somatosensory cortex. Analyses of whole brain myeloid and T-lymphoid cell populations also revealed a persistent elevation of infiltrating leukocytes, which included both neutrophil and monocyte myeloid derived suppressor cells (MDSCs). Regional analyses of the somatosensory cortex, hippocampus, and spinal cord revealed significant astrogliosis and microgliosis in the cortex and spinal cord of septic mice that was accompanied by significant microgliosis in the CA1 and CA3 hippocampal regions. Assessment of behavioral deficits revealed no changes in learning and memory or evoked locomotion. However, the hot plate test uncovered a novel anti-nociceptive phenotype in our septic mice, and we speculate that this phenotype may be a consequence of sustained GFAP astrogliosis and loss of TNAP activity in the somatosensory cortex and spinal cord of septic mice. Taken together, these results demonstrate that the loss of TNAP enzyme activity in cerebral microvessels during late sepsis is coupled to sustained neuroimmune dysfunction which may underlie, in part, the chronic neurological impairments observed in sepsis survivors.


Assuntos
Fosfatase Alcalina/metabolismo , Encéfalo/irrigação sanguínea , Inflamação/complicações , Inflamação/enzimologia , Microvasos/enzimologia , Sepse/complicações , Sepse/psicologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Inflamação/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/enzimologia
9.
Sci Rep ; 9(1): 18788, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827139

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme present in many cells and tissues, including the central nervous system. Yet its functions at the brain-immune axis remain unclear. The goal of this study was to use a novel small molecular inhibitor of TNAP, SBI-425, to interrogate the function of TNAP in neuroimmune disorders. Following intraperitoneal (IP) administration of SBI-425, mass spectrometry analysis revealed that the SBI-425 does not cross the blood-brain barrier (BBB) in healthy mice. To elucidate the role of TNAP at the brain-immune axis, mice were subjected to experimental sepsis and received either vehicle or SBI-425 (25 mg/kg, IP) daily for 7 days. While SBI-425 administration did not affect clinical severity outcomes, we found that SBI-425 administration suppressed CD4 + Foxp3+ CD25- and CD8 + Foxp3+ CD25- splenocyte T-cell populations compared to controls. Further evaluation of SBI-425's effects in the brain revealed that TNAP activity was suppressed in the brain parenchyma of SBI-425-treated mice compared to controls. When primary brain endothelial cells were treated with a proinflammatory stimulus the addition of SBI-425 treatment potentiated the loss of barrier function in BBB endothelial cells. To further demonstrate a protective role for TNAP at endothelial barriers within this axis, transgenic mice with a conditional overexpression of TNAP were subjected to experimental sepsis and found to have increased survival and decreased clinical severity scores compared to controls. Taken together, these results demonstrate a novel role for TNAP activity in shaping the dynamic interactions within the brain-immune axis.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Imunossupressores/farmacologia , Niacinamida/análogos & derivados , Sepse/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Células Endoteliais/efeitos dos fármacos , Feminino , Imunossupressores/metabolismo , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Niacinamida/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Sepse/imunologia , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico , Linfócitos T/imunologia
10.
Apoptosis ; 24(11-12): 958-971, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31641961

RESUMO

Anoikis resistance is an essential property of cancer cells that allow the extra-cellular matrix-detached cells to survive in a suspended state in body fluid in order to metastasize and invade to distant organs. It is known that integrins play an important role in anoikis resistance, but detailed mechanisms are not well understood. Here we report that highly metastatic colon cancer cells showed a higher degree of anoikis resistance than the normal intestinal epithelial cells. These anoikis-resistant cancer cells express high-levels of integrin-α2, ß1, and activated EGFR in the anchorage-independent state than the anchorage-dependent state. In contrast, normal intestinal epithelial cells failed to elevate these proteins. Interestingly, a higher co-association of EGFR with integrin-α2ß1/-α5ß1 was observed on the surface of anoikis-resistant cells. Thus, in the absence of extra-cellular matrix, integrins in association with EGFR activates downstream effectors ERK and AKT and suppress Caspase-3 activation to induce anoikis resistance as was confirmed from the gene-ablation and pharmacological inhibitor studies. Interestingly, these anoikis-resistant cancer cells express high-level of cancer stem cell signatures (CD24, CD44, CD133, EpCAM) and pluripotent stem cell markers (OCT-4, SOX-2, Nanog) as well as drug-resistant pumps (ABCG2, MDR1, MRP1). Altogether, our findings unravel the interplay between integrin-α2ß1/-α5ß1 and EGFR in anoikis resistance and suggest that the resistant cells are cancer initiating or cancer stem cells, which may serve as a promising target to combat metastasis of cancer.


Assuntos
Anoikis , Neoplasias do Colo/metabolismo , Integrina alfa2beta1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anoikis/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrina alfa2beta1/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteínas de Neoplasias/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo
11.
Immunol Cell Biol ; 96(10): 1035-1048, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29768737

RESUMO

CD8+ T-regulatory (Treg) cells are emerging as crucial components of immune system. Previous studies have reported the presence of FOXP3+ CD8+ Treg cells, similar to CD4+ Tregs, in cancer patients which produce high levels of the immunosuppressive cytokines, IL10 and TGFß. At an early stage of tumor development, we have identified a subset of FOXP3- CD8+ CD25+ KIR+ CD127- Treg-like cells, which are IFNγ+ . However, this early-induced CD8+ CD25+ CD127- T-cell subset is certainly distinct from the IFNγ+ CD8+ T-effector cells. These CD8+ CD25+ CD127- T cells express other FOXP3- CD8+ Treg cell signature markers, and can selectively suppress autoreactive HLA-E+ TFH cells as well as tumor-induced CD4+ Treg cells. In contrast to FOXP3+ CD8+ Tregs, this subset does not inhibit effector T-cell proliferation or their functions as they are HLA-E- . Adoptive transfer of this early-CD8+ Treg-like subset restrained tumor growth and inhibited CD4+ Treg generation that impedes the immune surveillance and impairs cancer immunotherapy. At the late stage of tumor development, when CD4+ Treg cells dominate the tumor-microenvironment, CD4+ Tregs mediate the clonal deletion of these tumor-suppressive FOXP3- IFNγ+ CD8+ CD25+ CD127- T cells and ensure tumor immune evasion. Our findings suggest that at an early stage of the tumor, this tumor-induced IFNγ-producing FOXP3- CD8+ CD25+ CD127- T-cell subset can potentiate immune surveillance by targeting HLA-E-restricted CD4+ Treg cells while leaving the effector T-cell population unaffected. Hence, manipulating their profile can open up a new avenue in cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Vigilância Imunológica , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Modelos Biológicos , Neoplasias/patologia , Fenótipo , Receptores KIR/metabolismo , Evasão Tumoral , Microambiente Tumoral
12.
Physiol Rep ; 5(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701524

RESUMO

Cytotoxic and neuroinflammatory effects of TiO2 nanoparticles (TiO2-NP) in human airways are mediated by nerve growth factor (NGF), which is also implicated in the pathophysiology of respiratory syncytial virus (RSV) infection. We tested the hypothesis that exposure to TiO2-NP results in increased susceptibility to RSV infection and exacerbation of airway inflammation via NGF-mediated induction of autophagy in lower respiratory tract cells. Human primary bronchial epithelial cells were exposed to TiO2-NP for 24 h prior to infection with recombinant red RSV (rrRSV). Expression of NGF and its TrkA and p75NTR receptors was measured by real-time PCR and fluorescence-activated cell sorting (FACS). Autophagy was assessed by beclin-1 expression analysis. Cell death was studied by FACS after annexin V/propidium iodide staining. rrRSV infection efficiency more than doubled in human bronchial cells pre-exposed to TiO2-NP compared to controls. NGF and its TrkA receptor were upregulated in RSV-infected bronchial cells pre-exposed to TiO2-NP compared to controls exposed to either rrRSV or TiO2-NP alone. Silencing NGF gene expression with siRNA significantly inhibited rrRSV infection. rrRSV-infected cells pre-exposed to TiO2-NP also showed increase in necrotic cell death and reduction in apoptosis, together with 4.3-fold increase in expression of the early autophagosomal gene beclin-1. Pharmacological inhibition of beclin-1 by wortmannin resulted in increased apoptotic rate along with lower viral load. This study shows that TiO2-NP exposure enhances the infectivity of RSV in human bronchial epithelial cells by upregulating the NGF/TrkA axis. The mechanism of this interaction involves induction of autophagy promoting viral replication and necrotic cell death.


Assuntos
Autofagia/fisiologia , Brônquios/virologia , Fator de Crescimento Neural/metabolismo , Infecções por Vírus Respiratório Sincicial , Titânio/toxicidade , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos
13.
Sci Rep ; 7(1): 1628, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487507

RESUMO

T-regulatory cells are an upsurge in the tumor microenvironment and induce immune-evasion. CD4+ Treg cells are well characterized whereas the role of CD8+ Tregs in cancer has recently started to crease attention. Here, we report an augmentation CD8+FOXP3+ Tregs in breast tumor microenvironment. FOXP3, the lineage-specific transcription factor, is a dominant regulator of Treg cell development and function. FOXP3 is induced preferentially by divergent signaling in CD4+ Treg cells. But how FOXP3 is induced and maintained in tumor-CD8+ Tregs is the Cinderella of the investigation. We observed that RUNX3, a CD8+ lineage-specific transcription factor, binds at the FOXP3-promoter to induce its transcription. In addition to promoter activation, involvement of cis-elements CNS1 and CNS2 in the transcriptional regulation of FOXP3 was also evident in these cells. SMAD3 binds to CNS1 region and acts as transcription inducer, whereas GATA3 plays a temporal role in the FOXP3 transcription by differential chromatin modification in CNS regions. In CNS1 region, GATA3 acts as a repressor for FOXP3 in naïve CD8+ T cells. Whereas in CD8+ Tregs, GATA3 binds directly at CNS2 region and persuaded the maintenance of FOXP3. Therefore, the intervention of these concerted transcriptional machinery may have a therapeutic potential in immunotherapy of cancer.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , DNA Intergênico/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Linfócitos T Reguladores/metabolismo , Transcrição Gênica , Adolescente , Adulto , Animais , Sequência de Bases , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Sequência Conservada/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA3/metabolismo , Humanos , Terapia de Imunossupressão , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Modelos Genéticos , Proteína Smad3/metabolismo , Microambiente Tumoral , Adulto Jovem
14.
J Toxicol Environ Health A ; 80(1): 53-68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28140833

RESUMO

Environmental and occupational exposures to respirable ultrafine fractions of particulate matter (PM) have been implicated in the initiation and exacerbation of lung diseases. However, the precise mechanisms underlying production of cell damage and death attributed to nanoparticles (NP) on human airway epithelium are not fully understood. This study examined the role of neurotrophic pathways in NP-induced airway toxicity. Size and agglomeration of TiO2 nanoparticles (TiO2-NP) and fine (TiO2-FP) particles were measured by dynamic light scattering. Expression and signaling of key neurotrophic factors and receptors were assessed by real-time polymerase chain reaction, flow cytometry, immunostaining, and Western blot in various respiratory epithelial cells after exposure to TiO2-NP or TiO2-FP. Particle-induced cell death was measured by flow cytometry after annexin V/propidium iodide staining. The role of neurotrophin-dependent apoptotic pathways was analyzed with specific blocking antibodies or siRNAs. Exposure of human epithelial cells to TiO2-NP enhanced interleukin (IL)-1α synthesis, as well as nerve growth factor (NGF) gene expression and protein levels, specifically the precursor form (proNGF). TiO2-NP exposure also increased expression of p75NRF receptor genes. These neurotropic factor and receptor responses were stimulated by IL-1α and abolished by its specific receptor antagonist (IL-1-ra). TiO2-NP also increased JNK phosphorylation and apoptosis, which was prevented by anti-p75NRF or NGFsiRNA. Data demonstrated that TiO2-NP exerted adverse effects in the respiratory tract by inducing unbalanced overexpression of immature neurotrophins, which led to apoptotic death of epithelial cells signaled through the death receptor p75NTR. This may result in airway inflammation and hyperreactivity after exposure to TiO2-NP.


Assuntos
Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Fatores de Crescimento Neural/genética , Material Particulado/toxicidade , Receptores de Fator de Crescimento Neural/genética , Titânio/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Crescimento Neural/metabolismo , Tamanho da Partícula , Receptores de Fator de Crescimento Neural/metabolismo , Sistema Respiratório/efeitos dos fármacos
15.
Sci Rep ; 6: 22335, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928472

RESUMO

Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future.


Assuntos
Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose/prevenção & controle , Macrófagos/imunologia , Fagossomos/metabolismo , Animais , Mediadores da Inflamação/metabolismo , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose/imunologia , Macrófagos/parasitologia , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Células RAW 264.7 , Vacinas Atenuadas , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Int J Oncol ; 47(2): 573-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26095308

RESUMO

Adverse side effects of chemotherapy during cancer treatment have shifted considerable focus towards therapies that are not only targeted but are also devoid of toxic side effects. We evaluated the antitumorigenic activity of sulphur, and delineated the molecular mechanisms underlying sulphur-induced apoptosis in non-small cell lung carcinoma (NSCLC) cells. A search for the underlying mechanism revealed that the choice between the two cellular processes, NFκBp65-mediated survival and p53-mediated apoptosis, was decided by the competition for a limited pool of transcriptional coactivator protein p300 in NSCLC cells. In contrast, sulphur inhibited otherwise upregulated survival signaling in NSCLC cells by perturbing the nuclear translocation of p65NFκB, its association with p300 histone acetylase, and subsequent transcription of Bcl-2. Under such anti-survival condition, induction of p53-p300 cross-talk enhanced the transcriptional activity of p53 and intrinsic mitochondrial death cascade. Overall, the findings of this preclinical study clearly delineated the molecular mechanism underlying the apoptogenic effect of the non-toxic homeopathic remedy, sulphur, in NSCLC cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína p300 Associada a E1A/metabolismo , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Enxofre/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Proteína p300 Associada a E1A/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
17.
J Biol Chem ; 289(42): 29074-85, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25157104

RESUMO

Matrix attachment region (MAR)-binding proteins have been implicated in the transcriptional regulation of host as well as viral genes, but their precise role in HPV-infected cervical cancer remains unclear. Here we show that HPV18 promoter contains consensus MAR element in the LCR and E6 sequences where SMAR1 binds and reinforces HPV18 E6 transcriptional silencing. In fact, curcumin-induced up-regulation of SMAR1 ensures recruitment of SMAR1-HDAC1 repressor complex at the LCR and E6 MAR sequences, thereby decreasing histone acetylation at H3K9 and H3K18, leading to reorientation of the chromatin. As a consequence, c-Fos binding at the putative AP-1 sites on E6 promoter is inhibited. E6 depletion interrupts degradation of E6-mediated p53 and lysine acetyl transferase, Tip60. Tip60, in turn, acetylates p53, thereby restoring p53-mediated transactivation of proapoptotic genes to ensure apoptosis. This hitherto unexplained function of SMAR1 signifies the potential of this unique scaffold matrix-associated region-binding protein as a critical regulator of E6-mediated anti-apoptotic network in HPV18-infected cervical adenocarcinoma. These results also justify the candidature of curcumin for the treatment of HPV18-infected cervical carcinoma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transcrição Gênica , Acetilação , Apoptose , Células HeLa , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fator de Transcrição AP-1/metabolismo
18.
FEBS Lett ; 588(4): 549-59, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24444609

RESUMO

Tumor-suppressive miR-34a, a direct target of p53, has been shown to target several molecules of cell survival pathways. Here, we show that capsaicin-induced oxidative DNA damage culminates in p53 activation to up-regulate expression of miR-34a in non-small cell lung carcinoma (NSCLC) cells. Functional analyses further indicate that restoration of miR-34a inhibits B cell lymphoma-2 (Bcl-2) protein expression to withdraw the survival advantage of these resistant NSCLC cells. In such a proapoptotic cellular milieu, where drug resistance proteins are also down-regulated, p53-transactivated Bcl-2 associated X protein (Bax) induces apoptosis via the mitochondrial death cascade. Our results suggest that p53/miR-34a regulatory axis might be critical in sensitizing drug-resistant NSCLC cells.


Assuntos
Apoptose , Capsaicina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/genética
19.
Immunity ; 39(6): 1057-69, 2013 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-24315995

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors. This study provided an explanation for why loss of FoxP3 in inducible regulatory T cells results in reduced expression of interleukin (IL)-10 despite the absence of FoxP3 binding sites in the IL-10 promoter. STAT3 binding sites do exist in the promoter, and evidence for a direct molecular interaction between FoxP3 and STAT3 proteins was provided as an explanation of the effect of loss of FoxP3. As supporting evidence, we reported modeling of a structural interaction between these two transcription factors in Figure 4D. As the N-terminal region of FoxP3, which consists of the Exon-2 region, had not been solved at structural resolution, we mistakenly used what we deduced to be a FoxP3 related transcription factor, NFAT, in the modeling. The model depicted in Figure 4D therefore did not represent a putative interaction between FoxP3 and STAT3 as labeled, but rather a putative interaction between NFAT and STAT3. Given the incorrect labeling of Figure 4D, the lack of documentation in the paper describing exactly how the modeling was performed, the lack of evidence shown in the paper for the choice of NFAT as the modeling partner, and the limited supporting evidence for a cooperative interaction between FoxP3 and STAT3, the editors have concluded with the corresponding author that the appropriate course of action is to retract the paper. We apologize for any confusion and inconvenience caused to readers.


Assuntos
Neoplasias da Mama/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Modelos Moleculares , Fatores de Transcrição
20.
J Environ Pathol Toxicol Oncol ; 28(3): 253-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19888913

RESUMO

This study investigated the effect of indoor air pollution from biomass-fuel use on the expression of argyrophilic nucleolar organizer regions (AgNORs), an indicator of ribosome biosynthesis, in epithelial cells of oral mucosa. AgNORs were evaluated using cytochemical staining in 62 nonsmoking indian women (median age, 34 years), who cooked exclusively with biomass, and 55 age-matched women, who were from a similar neighborhood and cooked with relatively clean liquefied petroleum gas (LPG). Concentrations of particulate pollutants in indoor air were measured using a real-time aerosol monitor. Compared to the LPG-using controls, biomass-fuel users showed a remarkably increased number of AgNOR dots per nucleus (6.08 +/-2.26 vs 3.16 +/-0.86, p < 0.001), AgNOR size (0.85 +/-0.19 vs 0.53 +/-0.15 mum2, p < 0.001), and percentage of AgNOR-occupied nuclear area (4.88 +/-1.49 vs 1.75 +/-0.13%, p < 0.001). Biomass-using households had 2 to 4 times more particulate pollutants than that of LPG-using households. The changes in AgNOR expression were positively associated with PM10 and PM2.5 levels in indoor air after controlling for potential confounders such as age, kitchen location, and family income. Thus, biomass smoke appears to be a risk factor for abnormal cell growth via upregulation of ribosome biogenesis.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Antígenos Nucleares/efeitos dos fármacos , Biomassa , Mucosa Bucal/efeitos dos fármacos , Região Organizadora do Nucléolo/efeitos dos fármacos , Fumaça/efeitos adversos , Adulto , Poluição do Ar em Ambientes Fechados/análise , Culinária , Fontes Geradoras de Energia , Feminino , Humanos , Mucosa Bucal/patologia , Coloração pela Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...