Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Clin Oncol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965396

RESUMO

Small-cell lung cancer (SCLC) has traditionally been considered a recalcitrant cancer with a dismal prognosis, with only modest advances in therapeutic strategies over the past several decades. Comprehensive genomic assessments of SCLC have revealed that most of these tumours harbour deletions of the tumour-suppressor genes TP53 and RB1 but, in contrast to non-small-cell lung cancer, have failed to identify targetable alterations. The expression status of four transcription factors with key roles in SCLC pathogenesis defines distinct molecular subtypes of the disease, potentially enabling specific therapeutic approaches. Overexpression and amplification of MYC paralogues also affect the biology and therapeutic vulnerabilities of SCLC. Several other attractive targets have emerged in the past few years, including inhibitors of DNA-damage-response pathways, epigenetic modifiers, antibody-drug conjugates and chimeric antigen receptor T cells. However, the rapid development of therapeutic resistance and lack of biomarkers for effective selection of patients with SCLC are ongoing challenges. Emerging single-cell RNA sequencing data are providing insights into the plasticity and intratumoural and intertumoural heterogeneity of SCLC that might be associated with therapeutic resistance. In this Review, we provide a comprehensive overview of the latest advances in genomic and transcriptomic characterization of SCLC with a particular focus on opportunities for translation into new therapeutic approaches to improve patient outcomes.

2.
Clin Cancer Res ; 29(17): 3526-3540, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382635

RESUMO

PURPOSE: Small-cell lung cancer (SCLC) is a high-grade neuroendocrine tumor with dismal prognosis and limited treatment options. Lurbinectedin, conditionally approved as a second-line treatment for metastatic SCLC, drives clinical responses in about 35% of patients, and the overall survival (OS) of those who benefit from it remains very low (∼9.3 months). This finding highlights the need to develop improved mechanistic insight and predictive biomarkers of response. EXPERIMENTAL DESIGN: We used human and patient-derived xenograft (PDX)-derived SCLC cell lines to evaluate the effect of lurbinectedin in vitro. We also demonstrate the antitumor effect of lurbinectedin in multiple de novo and transformed SCLC PDX models. Changes in gene and protein expression pre- and post-lurbinectedin treatment was assessed by RNA sequencing and Western blot analysis. RESULTS: Lurbinectedin markedly reduced cell viability in the majority of SCLC models with the best response on POU2F3-driven SCLC cells. We further demonstrate that lurbinectedin, either as a single agent or in combination with osimertinib, causes an appreciable antitumor response in multiple models of EGFR-mutant lung adenocarcinoma with histologic transformation to SCLC. Transcriptomic analysis identified induction of apoptosis, repression of epithelial-mesenchymal transition, modulation of PI3K/AKT, NOTCH signaling associated with lurbinectedin response in de novo, and transformed SCLC models. CONCLUSIONS: Our study provides a mechanistic insight into lurbinectedin response in SCLC and the first demonstration that lurbinectedin is a potential therapeutic target after SCLC transformation.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Transdução de Sinais/genética
3.
Arch Biochem Biophys ; 728: 109358, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872323

RESUMO

Protein tyrosine nitration (PTN), a highly selective post translational modification, occurs in both prokaryotic and eukaryotic cells under nitrosative stress. However, its physiological function is not yet clear. Like many gut pathogens, Vibrio cholerae also faces nitrosative stress, which makes its proteome more vulnerable to PTN. Here, we report for the first time in-vivo PTN in V. cholerae by immunoblotting and LC-ESI-MS/MS proteomic analysis. Our results indicated that in-vivo PTN in V. cholerae was culture media independent. Surprisingly, in-vivo PTN was reduced in V. cholerae proteome under anaerobic or hypoxic condition in a nutrient deprived state. Interestingly, intracellular nitrate content was more than the nitrite content in V. cholerae under anaerobic conditions. Additionally, biochemical measurement of GSH/GSSG ratio, activities of catalase and SOD, ROS and RNS imaging by confocal microscopy confirmed a relative intracellular oxidizing environment in V. cholerae under anaerobic conditions. This altered redox environment favors the oxidation of nitrite which may be generated from protein denitration enriching the intracellular nitrate pool. The cell survival of V. cholerae can finally be facilitated by nitrate reductase (NapA) utilizing that nitrate pool. Our cell viability study using wild type and ΔnapA strain of V. cholerae also supported the role of NapA mediated cell survival under nutrient deprived anaerobic conditions. In spite of having nitrate reductase (NapA), V. cholerae lacks any nitrite reductase (NiR). Hence, in-vivo nitration may provide an avenue for toxic nitrite storage and also may help in nitrosative stress tolerance mechanism preventing further unnecessary protein nitration in V. cholerae proteome.


Assuntos
Vibrio cholerae , Anaerobiose , Proteínas de Bactérias , Sobrevivência Celular , Nitratos , Nitritos , Nutrientes , Proteoma , Proteômica , Espectrometria de Massas em Tandem
4.
Cell Signal ; 64: 109411, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31491460

RESUMO

Induction of nitrosative stress has been observed in various cancer types and in tumor environment. However, it is still unclear how cancer cells combat the effect of nitrosative stress. The main targets of nitrosative stress in cells are cellular lipids, proteins and DNA. Autophagy or self-cleaning generates energy for cell survival under stress conditions. In the present study we investigated the role of autophagy under nitrosative stress in MCF7, a breast cancer cell line. Interestingly, we observed induction of autophagy associated with cell death when MCF7 cells were treated with NO donor compound DETA-NONOate for eight hours. While investigating the mode of cell death under nitrosative stress in MCF7 cells, it was found that it was neither apoptotic nor necrotic. Moreover, nitrosative stress did not alter mitochondrial membrane potential and cellular redox status in MCF7 cells. But we observed an increase in NAD+/NADH and a drop in NADH level in MCF7 cells following NO donor treatment. Sirtuins having NAD+ dependent deacetylase activity, play an important role in cell survival mechanisms. So we further checked the status of SIRT1 under nitrosative stress in MCF7 cells. Surprisingly, we observed an induction of SIRT1, phospho-AMPK and p53 in MCF7 cells under nitrosative stress. Interestingly, autophagy markers were down regulated in MCF7 cells upon treatment with nicotinamide, an inhibitor of SIRT1 activity and dorsomorphin, a phospho-AMPK inhibitor when treated separately under nitrosative stress. To further confirm the role of SIRT1 in the induction of autophagy associated cell death, it was knocked down using si-RNA and nitrosative stress was applied. SIRT1 knock down led to increase in MCF7 cell viability along with down regulation of autophagic markers and phospho-AMPK as well as accumulation of acetylated p53. The increase in p53 controlled DRAM1 mRNA expression in MCF7 cells under nitrosative stress further confirmed a complex interplay between p53, SIRT1 and AMPK under nitrosative stress in MCF7 cells. Altogether our work for the first time suggests a complex inter-twined partnership between AMPK, SIRT1 and p53 in regulating autophagy in response to nitrosative stress in MCF7 cells.


Assuntos
Autofagia/fisiologia , Estresse Nitrosativo/fisiologia , Proteínas Quinases/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Autofagia/efeitos dos fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Compostos Nitrosos/farmacologia , Oxirredução
5.
Free Radic Res ; 52(4): 491-506, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29508625

RESUMO

The biological outcome of nitric oxide (NO) and reactive nitrogen species (RNS) in regulating pro survival and pro death autophagic pathways still demand further investigation. In the present study, we investigated the effect of nitrosative stress in K562 cells using NO donor compound DETA-NONOate, peroxynitrite, and SIN-1. Exposure to NO, peroxynitrite, and SIN-1 caused decrease in K562 cell survival. NO induced autophagy but not apoptosis or necrosis in K562 cells. In contrast, peroxynitrite and SIN-1 treatment induced apoptosis in K562 cells. Surprisingly, inhibition of autophagic response using 3-methyladenine led to the induction of apoptosis in K562 cells. Increase in 5'adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was only observed in the presence of NO donor indicated that AMPK was crucial to induce autophagy in K562 cells. We for the first time discovered a novel role of p73 in autophagy induction under nitrosative stress in K562 cells. TAp73α was only induced upon exposure to NO but not in the presence of peroxynitrite. Reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio remained unaltered upon NO exposure. Our data suggest a complex network of interaction and cross regulations between NO and p73. These data open a new path for therapies based on the abilities of RNS to induce autophagy-mediated cell death.


Assuntos
Apoptose , Autofagia , Espécies Reativas de Nitrogênio/metabolismo , Proteína Tumoral p73/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos , Células K562 , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Compostos Nitrosos/farmacologia , Ácido Peroxinitroso/farmacologia
6.
Toxicon ; 138: 1-17, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28803055

RESUMO

Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity.


Assuntos
Ácidos Aristolóquicos/farmacologia , L-Aminoácido Oxidase/antagonistas & inibidores , Venenos de Víboras/antagonistas & inibidores , Animais , Aristolochia/química , Ácidos Aristolóquicos/síntese química , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Daboia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...