Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 4(2): 121-137, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35141476

RESUMO

Optimal cell spreading and interplay of vascular smooth muscle cells (VSMC), inflammatory cells, and cell adhesion molecules (CAM) are critical for progressive atherosclerosis and cardiovascular complications. The role of vitronectin (VTN), a major cell attachment glycoprotein, in the pathogenesis of atherosclerosis remains elusive. In this study, we attempt to examine the pathological role of VTN in arterial plaque progression and inflammation. We found that, relative expression analysis of VTN from the liver of Apolipoprotein E (ApoE) Knockout mice revealed that atherosclerotic progression induced by feeding mice with high cholesterol diet (HCD) causes a significant downregulation of VTN mRNA as well as protein after 60 days. Promoter assay confirmed that cholesterol modulates the expression of VTN by influencing its promoter. Mimicking VTN reduction with siRNA in HCD fed ApoE Knockout mice, accelerated athero-inflammation with an increase in NF-kB, ICAM-1, and VCAM-1 at the site of the plaque along with upregulation of inflammatory proteins like MCP-1 and IL-1ß in the plasma. Also, matrix metalloprotease (MMP)-9 and MMP-12 expression were increased and collagen content was decreased in the plaque, in VTN deficient condition. This might pose a challenge to plaque integrity. Human subjects with acute coronary syndrome or having risk factors of atherosclerosis have lower levels of VTN compared to healthy controls suggesting a clinical significance of plasma VTN in the pathophysiology of coronary artery disease. We establish that, VTN plays a pivotal role in cholesterol-driven atherosclerosis and aortic inflammation and might be a useful indicator for atherosclerotic plaque burden and stability.

2.
J Mol Biol ; 432(17): 4922-4941, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687853

RESUMO

Cholesterol homeostasis results from a delicate interplay between influx and efflux of free cholesterol primarily mediated by ABCA1. Here we report downregulation of ABCA1 in hyper-cholesterol conditions in macrophages, which might be responsible for compromised reverse cholesterol transport and hyperlipidemia. Surprisingly, this is countered by the upregulation of a lesser known family member ABCA5 to maintain cholesterol efflux. The relative contribution of ABCA1 and ABCA5 toward cholesterol efflux was evaluated and revealed ABCA5 as the primary efflux mediator under high cholesterol load. These observations were correlated to cholesterol load in circulation in vivo, and we observed an inverse expression profile in mice models of atherosclerosis (ApoE-/-) and hyperlipidemia (PPARα-/-) in response to high cholesterol diet. Observations were further validated in human plasma samples. Simulation studies revealed a unique conformation of ABCA5 proposing a favored route for cholesterol loading onto high-density lipoproteins for reverse cholesterol transport. Thus, our study implicates a functional complementation between these two transporters, formulating an efficient strategy to maintain efflux in cholesterol excess conditions in macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/sangue , Dislipidemias/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Dislipidemias/induzido quimicamente , Dislipidemias/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Células RAW 264.7 , Células THP-1
3.
Clin Sci (Lond) ; 133(22): 2283-2299, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31713591

RESUMO

The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)-/- mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with FcÉ£ receptor I (FcÉ£RI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE-/- mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcÉ£R1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


Assuntos
Doença da Artéria Coronariana/sangue , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Receptores de IgG/metabolismo , Receptores Imunológicos/sangue , Adenina/análogos & derivados , Adulto , Animais , Estudos de Casos e Controles , Linhagem Celular , Progressão da Doença , Humanos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Oxazinas , Piperidinas , Pirazóis , Piridinas , Pirimidinas , Quinase Syk/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...