Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 24(1): 67-74, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16780377

RESUMO

We employed UV light absorption and circular dichroism (CD) spectroscopic measurements to study the binding of novel water-soluble porphyrins meso-tetra-(4N-allylpyridyl)porphyrin [TAlPyP4], and its Ag containing derivative to the poly(rA)poly(rU) and poly(rI)poly(rC) RNA duplexes. Our results suggest that TAlPyP4 associate with the duplexes via intercalation, whereas the conservative CD spectra indicates that AgTAlPyP4 preferably binds via outside self-stacking mode. We used our determined binding isotherms for each ligand-RNA binding event to calculate the binding constant, Kb, and binding free energy, DeltaGb = -RTlnKb. By performing these experiments as a function of temperature, we evaluated the van't Hoff binding enthalpies, DeltaH. The binding entropies, DeltaSb, were calculated as DeltaSb = (DeltaHb - DeltaGb)/T. We interpret our data in terms of specific interactions that stabilize/destabilize each ligand-RNA complex studied in this work. Taken together, our data provide important new information about the thermodynamics of interactions of porphyrins with nucleic acids.


Assuntos
Poli A-U/metabolismo , Poli I-C/metabolismo , Porfirinas/metabolismo , Termodinâmica , Poli A-U/química , Poli I-C/química , Porfirinas/química
2.
J Mol Biol ; 314(4): 873-89, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11734004

RESUMO

Depending on solution conditions, beta-lactoglobulin can exist in one of its six pH-dependent structural states. We have characterized the acid and basic-induced conformational transitions between these structural states over the pH range of pH 1 to pH 13. To this end, we have employed high-precision ultrasonic and densimetric measurements coupled with fluorescence and CD spectroscopic data. Our combined spectroscopic and volumetric results have revealed five pH-induced transitions of beta-lactoglobulin between pH 1 and pH 13. The first transition starts at pH 2 and is not completed even at pH 1, our lowest experimental pH. This transition is followed by the dimer-to-monomer transition of beta-lactoglobulin between pH 2.5 and pH 4. The dimer-to-monomer transition is accompanied by decreases in volume, v degrees (-0.008(+/-0.003) cm3 x g(-1)), and adiabatic compressibility, k degrees (S) (-(0.7(+/-0.4))x10(-6) cm3 x g(-1) x bar(-1)). We interpret the observed changes in volume and compressibility associated with the dimer-to-monomer transition of beta-lactoglobulin, in conjunction with X-ray crystallographic data, as suggesting a 7 % increase in protein hydration, with the hydration changes being localized in the area of contact between the two monomeric subunits. The so-called N-to-Q transition of beta-lactoglobulin occurs between pH 4.5 and pH 6 and is accompanied by increases in volume, v degrees (0.004(+/-0.003) cm3 x g(-1)), and compressibility, k degrees (S) ((0.7(+/-0.4))x10(-6) cm3 x g(-1) x bar(-1)). The Tanford transition of beta-lactoglobulin is centered at pH 7.5 and is accompanied by a decrease in volume, v degrees (-0.006(+/-0.003) cm3 x g(-1)), and an increase in compressibility, k degrees (S) ((1.5(+/-0.5))x10(-6) cm3 x g(-1) x bar(-1)). Based on these volumetric results, we propose that the Tanford transition is accompanied by a 5 to 10 % increase in the protein hydration and a loosening of the interior packing of beta-lactoglobulin as reflected in a 12 % increase in its intrinsic compressibility. Finally, above pH 9, the protein undergoes irreversible base-induced unfolding which is accompanied by decreases in v degrees (-0.014(+/-0.003) cm3 x g(-1)) and k degrees (S) (-(7.0(+/-0.5))x10(-6) cm3 x g(-1) x bar(-1)). Combining these results with our CD spectroscopic data, we propose that, in the base-induced unfolded state of beta-lactoglobulin, only 80 % of the surface area of the fully unfolded conformation is exposed to the solvent. Thus, in so far as solvent exposure is concerned, the base-induced unfolded states of beta-lactoglobulin retains some order, with 20 % of its amino acid residues remaining solvent inaccessible.


Assuntos
Lactoglobulinas/química , Lactoglobulinas/metabolismo , Ultrassom , Pressão Atmosférica , Sítios de Ligação , Dicroísmo Circular , Força Compressiva , Dimerização , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Peso Molecular , Desnaturação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Subunidades Proteicas , Solventes , Água/metabolismo
3.
Biophys Chem ; 92(3): 209-27, 2001 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-11583837

RESUMO

We have determined the partial molar volumes, expansibilities, and adiabatic compressibilities of six heterocyclic nucleic acid bases, five ribonucleosides, and six 2'-deoxyribonucleosides within the temperature range 18-55 degrees C. We interpret the resulting data in terms of the hydration of the component hydrophobic and polar atomic groups. From our temperature-dependent volumetric studies, we found that the total contraction of water caused by polar groups of each individual heterocyclic base and nucleoside depends on the proximity and chemical nature of other functional groups of the solute. In addition, the compressibility contributions of polar groups vary greatly in sign and magnitude depending on the surrounding functional groups. In agreement with previous studies, our results are suggestive of little or no interaction between the sugar and base moieties of a nucleoside. In general, our data shed light into the hydration properties of individual heterocyclic bases and nucleosides, which may have significant implications for the sequence-dependent hydration of nucleic acids. We discuss the potential importance of our results for developing an understanding of the role that solvent plays in the stabilization/destabilization of nucleic acid structures.


Assuntos
Compostos Heterocíclicos/química , Nucleosídeos/química , Algoritmos , Fenômenos Químicos , Físico-Química , DNA/química , Densitometria , RNA/química , Temperatura , Termodinâmica , Água/química
4.
J Am Chem Soc ; 123(38): 9254-9, 2001 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-11562205

RESUMO

We present the first pressure-versus-temperature phase diagram for the helix-to-coil transition of double stranded nucleic acids. The thermodynamic stability of a nucleic acid duplex is a complex function of temperature and pressure and strongly depends on the denaturation temperature, T(M), of the duplex at atmospheric pressure. Depending upon T(M), pressure, and temperature, the phase diagram shows that pressure may stabilize, destabilize, or have no effect on the conformational state of DNA. To verify the phase diagram, we have conducted high-pressure UV melting experiments on poly(dIdC)poly(dIdC), a DNA duplex, poly(rA)poly(rU), an RNA duplex, and poly(dA)poly(rU), a DNA/RNA hybrid duplex. The T(M) values of these duplexes have been modulated by altering the solution ionic strength. Significantly, at low salt, these three duplexes have helix-to-coil transition temperatures of 50 degrees C or less. In agreement with the derived phase diagram, we found that the polymeric duplexes were destabilized by pressure if the T(M) is < approximately 50 degrees C. However, these duplexes were stabilized by pressure if the T(M) is > approximately 50 degrees C. The DNA/RNA hybrid duplex, poly(dA)poly(rU), with a T(M) of 31 degrees C in 20 mM NaCl undergoes a pressure-induced helix-to-coil transition at room temperature. This is the first report of pressure-induced denaturation of a nucleic acid duplex and provides new insights into the molecular forces stabilizing these structures.


Assuntos
DNA/química , RNA/química , Temperatura Alta , Conformação de Ácido Nucleico , Poli A/química , Poli A-U/química , Poli U/química , Polidesoxirribonucleotídeos/química , Pressão , Espectrofotometria Ultravioleta , Termodinâmica
5.
J Mol Biol ; 299(3): 827-42, 2000 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-10835287

RESUMO

We have characterized the acid-induced denaturation of staphylococcal nuclease (SNase) at different urea concentrations by a combination of ultrasonic velocimetry, high precision densimetry, and CD spectroscopy. Our CD spectroscopic results suggest that, at low salt and acidic pH, the protein is unfolded with disrupted secondary and tertiary structures. Furthermore, as judged by far UV CD spectra, the protein is further unfolded at acidic pH upon the addition of urea up to the concentration of 1.5 M. The midpoint of the transition shifts to more neutral pH values and the cooperativity of the transition decreases as the acid-induced denaturation of SNase occurs at higher urea concentrations. We find that the change in volume, Deltav, accompanying the acid-induced denaturation of SNase increases from -0.013 cm(3) g(-1) (-218 cm(3) mol(-1)) in the absence of urea to 0.011 cm(3) g(-1) (185 cm(3) mol(-1)) at 1.5 M urea. At all urea concentrations, the partial specific adiabatic compressibility, k(o)(s), of the protein decreases upon its unfolding with the values of Deltak(o)(s) equal to -6.3x10(-6) (-0.106 cm(3) mol(-1) bar(-1)), -4.5x10(-6) (-0.076 cm(3) mol(-1) bar(-1)), -4.6x10(-6) (-0.077 cm(3) mol(-1) bar(-1)), and -3.8x10(-6) (-0.064 cm(3) mol(-1) bar(-1)) cm(3) g(-1) bar(-1) at urea concentrations of 0, 0.5, 1.0, and 1.5 M, respectively. In general, our volumetric results suggest that the acid-induced denatured state of SNase is only partially unfolded with the solvent-exposed surface area equal to 70-80 % of that expected for the fully extended conformation.


Assuntos
Ácidos/metabolismo , Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Ácidos/farmacologia , Dicroísmo Circular , Relação Dose-Resposta a Droga , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína , Soluções , Espectrofotometria Ultravioleta , Termodinâmica , Ultrassom , Ureia/farmacologia , Água/metabolismo
6.
Biochemistry ; 38(45): 14999-5008, 1999 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-10555982

RESUMO

The interactions of equinatoxin II (EqTxII) with zwitterionic (DPPC) and anionic (DPPG) phospholipids and an equimolar mixture of the two phospholipids (DPPC/DPPG) have been investigated by differential scanning calorimetry (DSC), CD-spectropolarimetry, intrinsic emission fluorescence spectroscopy, and ultrasonic velocimetry. EqTxII binds to small unilamellar vesicles formed from negatively charged DPPG lipids, causing a marked reduction in the cooperativity and enthalpy of their gel/liquid-crystalline phase transition. This transition is completely abolished at a lipid-to-protein ratio, L/P, of 10. For the mixed DPPC/DPPG vesicles, a 2-fold greater lipid-to-protein ratio (L/P = 20) is required to abolish the phase transition, which corresponds to the same negative charge (-10) of lipid molecules per EqTxII molecule. The disappearance of the phase transition of the lipids apparently corresponds to the precipitation of the lipid-protein complex, as suggested by our sound velocity measurements. Based on the far-UV CD spectra, EqTxII undergoes two structural transitions in the presence of negatively charged vesicles (DPPG). The first transition coincides with the gel/liquid-crystalline phase transition of the lipids, which suggests that the liquid-crystalline form of negatively charged lipids triggers structural changes in EqTxII. The second transition involves the formation of alpha-helical structure. Based on these observations, we propose that, in addition to electrostatic interactions, hydrophobic interactions play an important role in EqTxII-membrane association.


Assuntos
Venenos de Cnidários/metabolismo , Citotoxinas/metabolismo , Lipídeos de Membrana/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animais , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Fosfatidilgliceróis/metabolismo , Conformação Proteica , Anêmonas-do-Mar , Espectrometria de Fluorescência
7.
Biopolymers ; 50(5): 459-71, 1999 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-10479730

RESUMO

Using high precision densimetric and ultrasonic measurements, we have determined, at 25 degrees C, the apparent molar volumes PhiV and the apparent molar compressibilities PhiK(S) of four nucleic acid duplexes-namely, the DNA duplex, poly(dIdC)poly(dIdC); the RNA duplex, poly(rA)poly(rU); and the two DNA/RNA hybrid duplexes, poly(rA)poly(dT) and poly(dA)poly(rU). Using available fiber diffraction data on these duplexes, we have calculated the molecular volumes as well as the solvent-accessible surface areas of the constituent charged, polar, and nonpolar atomic groups. We found that the hydration properties of these nucleic acid duplexes do not correlate with the extent and the chemical nature of the solvent-exposed surfaces, thereby suggesting a more specific set of duplex-water interactions beyond general solvation effects. A comparative analysis of our volumetric data on the four duplexes, in conjunction with available structural information, suggests the following features of duplex hydration: (a) The four duplexes exhibit different degrees of hydration, in the order poly(dIdC)poly(dIdC) > poly(dGdC)poly(dGdC) > poly(dAdT)poly(dAdT) approximately poly(dA)poly(dT). (b) Repetitive AT and IC sequences within a duplex are solvated beyond general effects by a spine of hydration in the minor groove, with this sequence-specific water network involving about 8 additional water molecules from the second and, perhaps, even the third hydration layers. (c) Repetitive GC and IC sequences within a duplex are solvated beyond general effects by a "patch of hydration" in the major groove, with this water network involving about 13 additional water molecules from the second and, perhaps, even the third hydration layers. (d) Random sequence, polymeric DNA duplexes, which statistically lack extended regions of repetitive AT, GC, or IC sequences, do not experience such specific enhancements of hydration. Consequently, consistent with our previous observations (T. V. Chalikian, A. P. Sarvazyan, G. E. Plum, and K. J. Breslauer, Biochemistry, 1994, Vol. 33, pp. 2394-2401), duplexes with approximately 50% AT content exhibit the weakest hydration, while an increase or decrease from this AT content causes enhancement of hydration, either due to stronger hydration of the minor groove (an increase in AT content) or due to stronger hydration of the major groove (an increase in GC content). (e) In dilute aqueous solutions, a B-DNA duplex is more hydrated than an A-DNA duplex, a volumetric-based conclusion that is in agreement with previous results obtained on crystals, fibers, and DNA solutions in organic solvent-water mixtures. (f) the A-like, RNA duplex poly(rA)poly(rU) and the structurally similar A-like, hybrid duplex poly(rA)poly(dT), exhibit similar hydration properties, while the structurally distinct A-like, hybrid duplex poly(rA)poly(dT) and non-A-like, hybrid duplex poly(dA)poly(rU) exhibit differential hydration properties, consistent with structural features dictating hydration characteristics. We discuss how volumetric characterizations, in conjunction with structural studies, can be used to describe, define, and resolve the general and sequence/conformation-specific hydration properties of nucleic acid duplexes.


Assuntos
DNA/química , RNA/química , Absorciometria de Fóton , Substâncias Macromoleculares , Reologia , Água/química
8.
Proc Natl Acad Sci U S A ; 96(14): 7853-8, 1999 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-10393911

RESUMO

We use a combination of calorimetric and volumetric techniques to detect and to characterize the thermodynamic changes that accompany helix-to-coil transitions for five polymeric nucleic acid duplexes. Our calorimetric measurements reveal that melting of the duplexes is accompanied by positive changes in heat capacity (DeltaCP) of similar magnitude, with an average DeltaCP value of 64.6 +/- 21.4 cal deg-1 mol-1. When this heat capacity value is used to compare significantly different transition enthalpies (DeltaHo) at a common reference temperature, Tref, we find DeltaHTref for duplex melting to be far less dependent on duplex type, base composition, or base sequence than previously believed on the basis of the conventional assumption of a near-zero value for DeltaCP. Similarly, our densimetric and acoustic measurements reveal that, at a given temperature, all the AT- and AU-containing duplexes studied here melt with nearly the same volume and compressibility changes. In the aggregate, our results, in conjunction with literature data, suggest a more unified picture for the thermodynamics of nucleic acid duplex melting. Specifically, when compared at a common temperature, the apparent large differences present in the literature for the transition enthalpies of different duplexes become much more compressed, and the melting of all-AT- and all-AU-containing duplexes exhibits similar volume and compressibility changes despite differences in sequence and conformation. Thus, insofar as thermodynamic properties are concerned, when comparing duplexes, the temperature under consideration is as important as, if not more important than, the duplex type, the base composition, or the base sequence. This general behavior has significant implications for our basic understanding of the forces that stabilize nucleic acid duplexes. This behavior also is of practical significance in connection with the use of thermodynamic databases for designing probes and for assessing the affinity and specificity associated with hybridization-based protocols used in a wide range of sequencing, diagnostic, and therapeutic applications.


Assuntos
Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Polidesoxirribonucleotídeos/química , Polirribonucleotídeos/química , Varredura Diferencial de Calorimetria/métodos , Temperatura Alta , Termodinâmica
9.
Curr Opin Struct Biol ; 8(5): 657-64, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9818272

RESUMO

Fundamental thermodynamic relationships reveal that volumetric studies on molecules of interest can yield useful new information. In particular, appropriately designed volumetric studies can characterize the properties of molecules as a function of solution conditions, including the role of solvation. Until recently, such studies on biologically interesting molecules have been limited because of the lack of readily available instrumentation with the requisite sensitivity; however, during the past decade, advances in the development of highly sensitive, small-volume densimetric, acoustic and high-pressure spectroscopic instrumentation have enabled biological molecules to be subjected to a wide range of volumetric studies. In fact, the volumetric methods used in these studies have already provided unique insights into the molecular origins of the intramolecular and intermolecular recognition events that modulate biomolecular processes. Of particular note are recent volumetric studies on globular proteins and nucleic acid duplexes. These studies have provided unique insights into the role of hydration in modulating the stabilities of these biopolymers, as well as their conformational transitions and ligand-binding properties.


Assuntos
Ácidos Nucleicos/química , Proteínas/química , Termodinâmica , Biofísica/instrumentação , Biofísica/métodos , Conformação de Ácido Nucleico , Ácidos Nucleicos/metabolismo , Conformação Proteica
10.
Biopolymers ; 48(4): 264-80, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-10699844

RESUMO

Volumetric studies can yield useful new information on a myriad of intra- and intermolecular interactions that stabilize nucleic acid structures. In particular, appropriately designed volumetric measurements can characterize the conformation-dependent hydration properties of nucleic acids as a function of solution conditions, including temperature, pressure, ionic strength, pH, and cosolvent concentration. We have started to accumulate a substantial database on volumetric properties of DNA and RNA, as well as on related low molecular weight model compounds. This database already has provided unique insights into the molecular origins of various nucleic acid recognition processes, including helix-to-coil and helix-to-helix conformational transitions, as well as drug-DNA interactions. In this article, we review recent progress in volumetric investigations of nucleic acids, emphasizing how these data can be used to gain insight into intra-and intermolecular interactions, including hydration properties. Throughout this review, we underscore the importance of volume and compressibility data for characterizing the hydration properties of nucleic acids and their constituents. We also describe how such volumetric data can be interpreted at the molecular level to yield a better understanding of the role that hydration can play in modulating the stability and recognition of nucleic acids.


Assuntos
Ácidos Nucleicos/química , Animais , Fenômenos Biomecânicos , Força Compressiva , Humanos , Conformação de Ácido Nucleico , Ácidos Nucleicos/metabolismo , Termodinâmica
11.
Biophys Chem ; 75(1): 57-71, 1998 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17027457

RESUMO

We have determined the apparent molar volumes and the apparent molar adiabatic compressibilities at 25 degrees C of 10 X-Gly-Gly and Gly-Gly-X tripeptides in which X represents a residue with a non-polar side chain. We also have determined the changes in volume and compressibility which accompany neutralization of the amino and carboxyl termini in these tripeptides. The mutual influence of the non-polar side chain of the X residue and the terminal amino and carboxyl groups on the hydration of each other depends on the chemical nature of the side chain and the state of ionization of the termini. We interpret our data in terms of the hydration of the component aliphatic, aromatic, and charged atomic groups, as well as the mutual interactions between these groups.

12.
J Mol Biol ; 274(2): 237-52, 1997 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-9398530

RESUMO

We report the first protein phase-diagram characterized by a combination of volumetric, calorimetric, and spectroscopic techniques. More specifically, we use ultrasonic velocimetry, densimetry, and differential scanning calorimetry, in conjunction with UV absorbance and CD spectroscopy to detect and to characterize the conformational transitions of alpha-chymotrypsinogen A as a function of both pH and temperature. As judged by the CD spectra, we find that, at room temperature, the protein remains in the native state over the entire pH range investigated (pH 1 to 10). The melting profiles of the native state reveal three distinct pH domains in which protein denaturation produces different final states. Below pH 3.1, we find the heat-induced denatured state of the protein to be molten globule (MG), lacking the native-like tertiary structure, while exhibiting significant secondary structural elements. At neutral and alkaline pH, we find the heat-induced denatured state to be unfolded (U), lacking both tertiary and secondary structures, while being structurally similar to the urea-unfolded state. At intermediate pH values (between pH 3.1 and 7), we find the heat-induced denatured state to exhibit properties characteristic of both the MG and U states. Although at room temperature the protein remains native within the whole pH range studied (pH 1 to 10), our volumetric data reveal that the native state slightly "softens" at low pH, probably, due to pH-induced alterations in electrostatic forces causing the packing of the protein interior at low pH and room temperature to become less "tight". This softening of the protein at low pH is reflected in an 8% increase in the intrinsic compressibility, kM, of the protein "native" state. Our volumetric data also allow us to conclude that the heat-induced MG state retains a liquid-like, water-inaccessible core, with a volume that corresponds to about 40% of the solvent-inaccessible core of the native state. By contrast, our volumetric data are consistent with the U state of the protein being essentially unfolded, with the majority of its constituent atomic groups being solvent exposed and, therefore, strongly hydrated.


Assuntos
Quimotripsinogênio/química , Conformação Proteica , Desnaturação Proteica , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Temperatura Alta , Concentração de Íons de Hidrogênio , Dobramento de Proteína , Espectrofotometria Ultravioleta , Termodinâmica , Ultrassom , Raios Ultravioleta
14.
J Mol Biol ; 260(4): 588-603, 1996 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-8759322

RESUMO

We report the first thermodynamic characterization of protein hydration that does not depend on model compound data but rather is based exclusively on macroscopic (volumetric) and microscopic (X-ray) measurements on protein molecules themselves. By combining these macroscopic and microscopic characterizations, we describe a quantitative model that allows one for the first time to predict the partial specific volumes, v(zero), and the partial specific adiabatic compressibilities, ks(zero), of globular proteins from the crystallographic coordinates of the constituent atoms, without using data derived from studies on low-molecular-mass model compounds. Specifically, we have used acoustic and densimetric techniques to determine v(zero) and ks(zero) for 15 globular proteins over a temperature range from 18 to 55 degrees C. For the subset of the 12 proteins with known three-dimensional structures, we calculated the molecular volumes as well as the solvent-accessible surface areas of the constituent charged, polar and nonpolar atomic groups. By combining these measured and calculated properties and applying linear regression analysis, we determined, as a function of temperature, the average hydration contributions to v(zero) and ks(zero) of 1 A2 of the charged, polar, and nonpolar solvent-accessible protein surfaces. We compared these results with those derived from studies on low-molecular-mass compounds to assess the validity of existing models of protein hydration based on small molecule data. This comparison revealed the following features: the hydration contributions to v(zero) and ks(zero) of charged protein surface groups are similar to those of charged groups in small organic molecules. By contrast, the hydration contributions to v(zero) and ks(zero) of polar protein surface groups are qualitatively different from those of polar groups in low-molecular-mass compounds. We suggest that this disparity may reflect the presence of networks of water molecules adjacent to polar protein surface areas, with these networks involving waters from second and third coordination spheres. For nonpolar protein surface groups, we find the ability of low-molecular-mass compounds to model successfully protein properties depends on the temperature domain being examined. Specifically, at room temperatures and below, the hydration contribution to ks(zero) of protein nonpolar surface atomic groups is close to that of nonpolar groups in small organic molecules. By contrast, at higher temperatures, the hydration contribution to ks(zero) of protein nonpolar surface groups becomes more negative than that of nonpolar groups in small organic molecules. We suggest that this behaviour may reflect nonpolar groups on protein surfaces being hydrated independently at low temperatures, while at higher temperatures some of the solvating waters become influenced by neighboring polar groups. We discuss the implications of our aggregate results in terms of various approaches currently being used to describe the hydration properties of globular proteins, particularly focusing on the limitations of existing additive models based on small molecule data.


Assuntos
Modelos Químicos , Proteínas/química , Termodinâmica , Cristalografia por Raios X , Modelos Moleculares , Peso Molecular , Conformação Proteica , Análise de Regressão , Temperatura , Água/metabolismo
15.
Proc Natl Acad Sci U S A ; 93(3): 1012-4, 1996 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-8577705

RESUMO

We report compressibility data on single-domain, globular proteins which suggest a general relationship between protein conformational transitions and delta kzeroS, the change in the partial specific adiabatic compressibility which accompanies the transition. Specifically, we find transitions between native and compact intermediate states to be accompanied by small increases in kzeroS of +(1-4) x 10(-6) cm3.g-1.bar-1 (1 bar = 100 kPa). By contrast, transitions between native and partially unfolded states are accompanied by small decreases in kzeroS of -(3-7) x 10(-6) cm3.g-1.bar-1, while native-to-fully unfolded transitions result in large decreases in kzeroS of -(18-20) x 10(-6) cm3.g-1.bar-1. Thus, for the single-domain, globular proteins studied here, changes in kzeroS correlate with the type of transition being monitored, independent of the specific protein. Consequently, kzeroS measurements may provide a convenient approach for detecting the existence of and for defining the nature of protein transitions, while also characterizing the hydration properties of individual protein states.


Assuntos
Enzimas/química , Conformação Proteica , Proteínas/química , Quimotripsinogênio/química , Grupo dos Citocromos c/química , Lactalbumina/química , Mioglobina/química , Dobramento de Proteína , Ribonucleases/química , Termodinâmica
16.
FASEB J ; 10(1): 164-70, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8566538

RESUMO

We have measured at 25 degrees C the relative specific sound velocity increment, [u], and the partial specific volume, v degrees, of cytochrome c as a function of pH. Our data reveal that the base-induced native to unfolded transition of the protein is accompanied by a volume decrease of 0.014 cm3 g-1 and a compressibility decrease of 3.8 x 10(-6) cm3 g-1 bar-1. These results allow us to conclude that, relative to a fully unfolded conformation, the base-denatured state of cytochrome c has only 70 to 80% of its surface area exposed to the solvent. Recently, we reported a similar result for the acid-denatured state of cytochrome c. Thus, insofar as solvent exposure is concerned, both the base- and the acid-induced unfolded states of cytochrome c retain some order, with 20 to 30% of their surface areas remaining solvent-inaccessible. We discuss the implications of this result in terms of defining potential intermediate states in protein folding pathways.


Assuntos
Grupo dos Citocromos c/química , Álcalis , Animais , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Modelos Químicos , Tamanho da Partícula , Conformação Proteica , Desnaturação Proteica , Espectrofotometria , Propriedades de Superfície , Temperatura , Ultrassom
17.
J Mol Biol ; 250(2): 291-306, 1995 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-7608975

RESUMO

Cytochrome c can exist in a native (N), a molten globule (MG) or an unfolded (U) state depending on solution conditions. We have used high-precision ultrasonic and densimetric techniques to measure volume and compressibility changes accompanying the N to MG, N to U and U to MG transitions of the protein. For the N to MG transition (induced by lowering the pH to 2 in the presence of 200 mM CsCl), we measure a volume increase of 0.014 cm3g-1 and a compressibility increase of 3.8 x 10(-6) cm3g-1bar-1. For the N to U transition (induced by lowering the pH to 2 in the absence of salt), we measure a volume increase of 0.010 cm3 g-1 and a compressibility decrease of 2.0 x 10(-6) cm3 g-1 bar-1. For the U to MG transition at pH 2 (induced by adding CsCl up to 200 mM), we measure a volume increase of 0.006 cm3 g-1 and a compressibility increase of 6.8 x 10(-6) cm3 g-1 bar-1. We interpret these data to reach the following conclusions about the three states of cytochrome c. (1) A solvent-inaccessible core is preserved in the molten globule state, with the volume of this core being about 40% of the intrinsic volume of native cytochrome c. (2) The coefficient of the adiabatic compressibility of this preserved molten globule core is 61 x 10(-6) bar-1, a value that is over four times higher than that of the interior of the native protein. This result is consistent with the interior of the preserved MG core being liquid-like in contrast to the more tightly packed, solid-like interior of the native state. (3) In the unfolded state of cytochrome c, only 70 to 80% of the surface area of a fully unfolded conformation is exposed to the solvent, a result that reflects some level of order in the "denatured" state. (4) The relative volume fluctuations of the solvent-inaccessible interiors of the native, molten globule and unfolded states are equal to 0.6%, 2.0% and 2.9%, respectively. These data are consistent with the solvent-inaccessible core of the molten globule state being much more loosely packed than the core of the native state. In fact, the fluctuations in the molten globule and unfolded states are so high that one cannot exclude the possibility that formally buried atomic groups transiently contact solvent molecules. To the best of our knowledge, the data reported here provide the first characterizations of the intrinsic volume and compressibility properties of the native, molten globule and unfolded states of a single protein. We discuss in terms of the current protein literature the new insights that can be derived from these data.


Assuntos
Grupo dos Citocromos c/química , Dobramento de Proteína , Animais , Césio , Cloretos , Dicroísmo Circular , Densitometria , Cavalos , Concentração de Íons de Hidrogênio , Conformação Proteica , Reologia , Solventes , Espectrofotometria Ultravioleta , Ultrassom
18.
Biophys Chem ; 51(2-3): 89-107; discussion 107-9, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7919045

RESUMO

We review the results of compressibility studies on proteins, nucleic acids, and systematically altered low molecular weight compounds that model the constituents of these biopolymers. The model compound data allow one to define the compressibility properties of water surrounding charged, polar, and nonpolar groups. These results, in conjunction with compressibility data on proteins and nucleic acids, were used to define the properties of water that is perturbed by the presence of these biopolymers in aqueous solutions. Throughout this review, we emphasize the importance of compressibility data for characterizing the hydration properties of solutes (particularly, proteins, nucleic acids, and their constituents), while describing how such data can be interpreted to gain insight into role that hydration can play in modulating the stability of and recognition between biologically important compounds.


Assuntos
Biopolímeros/química , Animais , Fenômenos Químicos , Físico-Química , Eletroquímica , Humanos , Modelos Químicos , Estrutura Molecular , Ácidos Nucleicos/química , Pressão , Proteínas/química , Termodinâmica , Água/química
19.
Biochemistry ; 33(29): 8629-40, 1994 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-8038152

RESUMO

We use high-precision acoustic and densimetric techniques to determine, at 25 degrees C, the changes in volume, delta V, and adiabatic compressibility, delta Ks, that accompany the binding of netropsin to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes, as well as to the poly(dT).poly(dA).poly(dT) triplex. We find that netropsin binding to the heteropolymeric poly(dAdT).poly(dAdT) duplex is accompanied by negative changes in volume, delta V, and small positive changes in compressibility, delta Ks. By contrast, netropsin binding to the homopolymeric poly(dA).poly(dT) duplex is accompanied by large positive changes in both volume, delta V, and compressibility, delta Ks. Furthermore, netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes changes in both volume and compressibility that are nearly twice as large as those observed when netropsin binds to the poly(dA).poly(dT) duplex. We interpret these macroscopic data in terms of binding-induced microscopic changes in the hydration of the DNA structures and the drug. Specifically, we find that netropsin binding induces the release of approximately 22 waters from the hydration shell of the poly(dAdT).poly(dAdT) heteropolymeric duplex, approximately 40 waters from the hydration shell of the poly(dA).poly(dT) homopolymeric duplex, and about 53 waters from the hydration shell of the poly(dA).poly(dT), induces the release of 18 more water molecules than netropsin binding to the heteropolymeric duplex, poly(dAdT).poly(dAdT). On the basis of apparent molar volume, phi V, and apparent molar adiabatic compressibility, phi Ks, values for the initial drug-free and final drug-bound states of the two all-AT duplexes, we propose that the larger dehydration of the poly(dA).poly(dT) duplex reflects, in part, the formation of a less hydrated poly(dA).poly(dT)-netropsin complex compared with the corresponding poly(dAdT).poly(dAdT)-netropsin complex. In conjunction with our previously published entropy data [Marky, L. A., & Breslauer, K. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4359-4363], we calculate that each water of hydration released to the bulk solvent by ligand binding contributes 1.6 cal K-1 mol-1 to the entropy of binding. This value corresponds to the average difference between the partial molar entropy of water in the bulk state and water in the hydration shells of the two all-AT duplexes. When netropsin binds to the poly(dT).poly(dA).poly(dT) triplex, the changes in both volume and compressibility suggest that the binding event induces more dehydration of the triplex than of the duplex state. Specifically, we calculate that netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes the release of 13 more waters than netropsin binding to the poly(dA).poly(dT) duplex.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
DNA/química , Netropsina/química , Fenômenos Biofísicos , Biofísica , Dicroísmo Circular , Conformação de Ácido Nucleico , Poli dA-dT/química , Polidesoxirribonucleotídeos/química , Água
20.
Biochemistry ; 33(9): 2394-401, 1994 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-8117699

RESUMO

Using high-precision densitometric and ultrasonic measurements, we have determined, at 25 degrees C, the apparent molar volumes, phi V, and the apparent molar compressibilities, phi KS, of five natural and three synthetic B-form DNA duplexes with varying base compositions and base sequences. We find that phi V ranges from 152.0 to 186.6 cm3 mol-1, while phi KS ranges from -73.0 x 10(-4) to -32.6 x 10(-4) cm3 mol-1 bar-1. We interpret these data in terms of DNA hydration which, by the definition employed in this work, refers to those water molecules whose density and compressibility differ from those of bulk water due to interactions with the DNA solute. This definition implies that hydration depends not just on the quantity but also on the quality of the solvent molecules perturbed by the solute. In fact, we find that the number of water molecules perturbed by the DNA duplexes (the quantity of water in their hydration shells) is approximately the same for all of the B-form double helixes studied, while the quality of this water differs as measured by its density and compressibility, thereby yielding differences in the overall hydration properties. Specifically, we find a linear relationship between the density and the coefficient of adiabatic compressibility, beta Sh, of water in the hydration shell of the DNA duplexes, with the range of values for beta Sh being only 65-80% of the value of bulk water.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
DNA/química , Composição de Bases , Fenômenos Biofísicos , Biofísica , Poli dA-dT/química , Polidesoxirribonucleotídeos/química , Som , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...