Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 188(3-4): e637-e645, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-34476483

RESUMO

INTRODUCTION: Assessment of functional recovery of service members following a concussion is central to their return to duty. Practical military-relevant performance-based tests are needed for identifying those who might need specialized rehabilitation, for evaluating the progress of recovery, and for making return-to-duty determinations. One such recently developed test is the 'Portable Warrior Test of Tactical Agility' (POWAR-TOTAL) assessment designed for use following concussion in an active duty population. This agility task involves maneuvers used in military training, such as rapid stand-to-prone and prone-to-stand transitions, combat rolls, and forward and backward running. The effect of concussion on the performance of such maneuvers has not been established. MATERIALS AND METHODS: The Institutional Review Board-approved study was conducted at Ft. Bragg, North Carolina, on 57 healthy control (HC) service members (SMs) and 42 well-matched SMs who were diagnosed with concussion and were referred for physical therapy with the intent to return to duty. Each study participant performed five consecutive trials of the POWAR-TOTAL task at full exertion while wearing inertial sensors, which were used to identify the constituent task maneuvers, or phases, and measure their durations. Statistical analyses were performed on durations of three main phases: (1) rising from prone and running, (2) lowering from vertical to prone, and (3) combat rolls. RESULTS: None of the three phases showed significant correlation with age (range 18-45 years) in either group. Gradual improvement in all three phase durations across five trials was observed in the HC group, but not in the concussed group. On average, control subjects performed significantly faster (P < .004 or less) than concussed subjects in all trials in the lowering and rolling phases, but less so in the rising/running phase. Membership in the concussed group had a strong effect on the lowering phase (Cohen's d = 1.05), medium effect on the rolling phase (d = 0.72), and small effect on the rising/running phase (d = 0.49). Individuals in the HC group who had a history of prior concussions were intermediate between the concussed group and the never-concussed group in the lowering and rolling phases. Duration of transitional movements (lowering from standing to prone and combat rolls) was better at differentiating individuals' performance by group (receiver operating characteristic area under the curve [AUC] = 0.83) than the duration of the entire POWAR-TOTAL task (AUC = 0.71). CONCLUSIONS: Inertial sensor analysis reveals that rapid transitional movements (such as lowering from vertical to prone position and combat rolls) are particularly discriminative between SMs recovering from concussion and their concussion-free peers. This analysis supports the validity of POWAR-TOTAL as a useful tool for therapists who serve military SMs.


Assuntos
Concussão Encefálica , Dispositivos Eletrônicos Vestíveis , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Concussão Encefálica/epidemiologia , North Carolina , Movimento
2.
Brain Res ; 1717: 228-234, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31028729

RESUMO

The primary somatosensory cortex (S1) comprises a number of functionally distinct regions, reflecting the diversity of somatosensory receptor submodalities innervating the body. In particular, two spatially and functionally distinct nociceptive regions have been described in primate S1 (Vierck et al., 2013; Whitsel et al., 2019). One region is located mostly in Brodmann cytoarchitectonic area 1, where a subset of neurons exhibit functional characteristics associated with myelinated Aδ nociceptors and perception of 1st/sharp, discriminative pain. The second region is located at the transition between S1 and primary motor cortex (M1) in area 3a, where neurons exhibit functional characteristics associated with unmyelinated C nociceptors and perception of 2nd/slow, burning pain. To test the hypothesis that in rats the transitional zone (TZ) - which is a dysgranular region at the transition between M1 and S1 - is the functional equivalent of the nociresponsive region of area 3a in primates, extracellular spike discharge activity was recorded from TZ neurons in rats under general isoflurane anesthesia. Thermonoxious stimuli were applied by lowering the contralateral forepaw or hindpaw into a 48-51 °C heated water bath for 5-10 s. Neurons in TZ were found to be minimally affected by non-noxious somatosensory stimuli, but highly responsive to thermonoxious skin stimuli in a slow temporal summation manner closely resembling that of nociresponsive neurons in primate area 3a. Selective inactivation of TZ by topical lidocaine application suppressed or delayed the nociceptive withdrawal reflex, suggesting that TZ exerts a tonic facilitatory influence over spinal cord neurons producing this reflex. In conclusion, TZ appears to be a rat homolog of the nociresponsive part of monkey area 3a. A possibility is considered that this region might be primarily engaged in autonomic aspects of nociception.


Assuntos
Nociceptores/fisiologia , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiologia , Animais , Mapeamento Encefálico/métodos , Feminino , Membro Anterior/fisiologia , Masculino , Córtex Motor/fisiologia , Nociceptividade/fisiologia , Nociceptores/metabolismo , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia , Células Receptoras Sensoriais/metabolismo , Córtex Somatossensorial/fisiologia , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...