Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38515264

RESUMO

The human foot's arch is thought to be beneficial for efficient gait. This study addresses the extent to which arch stiffness changes alter the metabolic energy requirements of human gait. Computational musculoskeletal simulations of steady state walking using direct collocation were performed. Across a range of foot arch stiffnesses, the metabolic cost of transport decreased by less than 1% with increasing foot arch stiffness. Increasing arch stiffness increased the metabolic efficiency of the triceps surae during push-off, but these changes were almost entirely offset by other muscle groups consuming more energy with increasing foot arch stiffness.

2.
PLoS One ; 19(2): e0294691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349945

RESUMO

The primary purpose of this study was to compare the ankle joint mechanics, during the stance phase of running, computed with a multi-segment foot model (MULTI; three segments) with a traditional single segment foot model (SINGLE). Traditional ankle joint models define all bones between the ankle and metatarsophalangeal joints as a single rigid segment (SINGLE). However, this contrasts with the more complex structure and mobility of the human foot, recent studies of walking using more multiple-segment models of the human foot have highlighted the errors arising in ankle kinematics and kinetics by using an oversimplified model of the foot. This study sought to compare whether ankle joint kinematics and kinetics during running are similar when using a single segment foot model (SINGLE) and a multi-segment foot model (MULTI). Seven participants ran at 3.1 m/s while the positions of markers on the shank and foot were tracked and ground reaction forces were measured. Ankle joint kinematics, resultant joint moments, joint work, and instantaneous joint power were determined using both the SINGLE and MULTI models. Differences between the two models across the entire stance phase were tested using statistical parametric mapping. During the stance phase, MULTI produced ankle joint angles that were typically closer to neutral and angular velocities that were reduced compared with SINGLE. Instantaneous joint power (p<0.001) and joint work (p<0.001) during late stance were also reduced in MULTI compared with SINGLE demonstrating the importance of foot model topology in analyses of the ankle joint during running. This study has highlighted that considering the foot as a rigid segment from ankle to MTP joint produces poor estimates of the ankle joint kinematics and kinetics, which has important implications for understanding the role of the ankle joint in running.


Assuntos
Articulação do Tornozelo , Corrida , Humanos , Tornozelo , Caminhada , Perna (Membro) , Fenômenos Biomecânicos , Articulações do Pé , Marcha
3.
J Biomech Eng ; 145(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792499

RESUMO

Image-based motion-analysis systems typically place markers on the bodies of interest. The error in determining segment attitude from these markers is a function the marker position errors, the number of markers, and the spatial distribution of the markers. The spatial distribution includes two factors: the mean square distance of these markers to their geometric center, and the degree of anisotropy in the marker distribution. The purposes of this study were to: (1) present a metric which quantifies the marker spatial distribution (anisotropic to isotropic) and (2) examine the influence of marker distribution on the accuracy of rigid body attitude determination. To test the influence of the marker distribution on body attitude determination 1000 criterion attitudes were determined. These attitudes then had to be estimated for two marker sets for which the marker distribution metric, noise levels, and root-mean-square distance of the markers were systematically varied. Anisotropic marker distributions were shown to negatively affect the accuracy of attitude determination. The influence of anisotropic marker distributions on attitude accuracy could be blunted by increasing the number of markers, increasing the root-mean-square distance of markers from their geometric center, and reducing noise levels. These results have implications for the measurement of the attitudes of body segments. For example, the ability to have a large spatial distribution of markers and a large number of markers to maximize the measurement accuracy of segment attitude is different for a small segment such as the fifth metacarpal compared with the thigh.


Assuntos
Processamento de Imagem Assistida por Computador , Extremidade Inferior , Fenômenos Biomecânicos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Coxa da Perna
4.
J Biomech ; : 111743, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37544849
5.
J Biomech ; 152: 111547, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996599

RESUMO

The presence of successful female role models in biomechanics can encourage girls, women, and other underrepresented groups in STEM fields to pursue and remain within the discipline. It is, therefore, vital that women and their contributions to the field are publicly visible and recognized across all areas of professional biomechanical societies, such as the International Society of Biomechanics (ISB). Enhancing the visibility of female role models in biomechanics can act to mitigate current bias and stereotyping in the discipline by broadening what it looks like to be a biomechanist. Unfortunately, women are not publicly visible in many aspects of ISB activities, and finding details of women's contributions to ISB, particularly during ISB's formative years, is challenging. This review article aims to raise the visibility of female biomechanists, particularly women in ISB leadership positions who have helped shape the Society over the past 50 years. We summarize the unique backgrounds and contributions of some of these pioneering women who blazed pathways for other female biomechanists. We also recognize the women who were charter members of ISB, women who served on ISB Executive Councils and the portfolios they have held, women who have received the highest awards of the Society, and women awarded a Fellowship of ISB. Practical strategies to enhance women's participation in biomechanics also are presented so that women can thrive and progress in ISB leadership positions and awards and, in turn, serve as positive role models to encourage girls and women to pursue and remain within this unique discipline.


Assuntos
Distinções e Prêmios , Humanos , Feminino , Fenômenos Biomecânicos , Sociedades Médicas
6.
J Biomech ; 151: 111529, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36913798

RESUMO

The arch of the human foot has historically been likened to either a truss, a rigid lever, or a spring. Growing evidence indicates that energy is stored, generated, and dissipated actively by structures crossing the arch, suggesting that the arch can further function in a motor- or spring-like manner. In the present study, participants walked, ran with a rearfoot strike pattern, and ran with a non-rearfoot strike pattern overground while foot segment motions and ground reaction forces were recorded. To quantify the midtarsal joint's (i.e., arch's) mechanical behavior, a brake-spring-motor index was defined as the ratio between midtarsal joint net work and the total magnitude of joint work. This index was statistically significantly different between each gait condition. Index values decreased from walking to rearfoot strike running to non-rearfoot strike running, indicating that the midtarsal joint was most motor-like when walking and most spring-like in non-rearfoot running. The mean magnitude of elastic strain energy stored in the plantar aponeurosis mirrored the increase in spring-like arch function from walking to non-rearfoot strike running. However, the behavior of the plantar aponeurosis could not account for a more motor-like arch in walking and rearfoot strike running, given the lack of main effect of gait condition on the ratio between net work and total work performed by force in the plantar aponeurosis about the midtarsal joint. Instead, the muscles of the foot are likely altering the motor-like mechanical function of the foot's arch, the operation of these muscles between gait conditions warrants further investigation.


Assuntos
, Corrida , Humanos , Fenômenos Biomecânicos , Pé/fisiologia , Marcha/fisiologia , Corrida/fisiologia , Caminhada
7.
Artigo em Inglês | MEDLINE | ID: mdl-36455077

RESUMO

Quantitative evaluation of human stability using foot pressure/force measurement hardware and motion capture (mocap) technology is expensive, time consuming, and restricted to the laboratory. We propose a novel image-based method to estimate three key components for stability computation: Center of Mass (CoM), Base of Support (BoS), and Center of Pressure (CoP). Furthermore, we quantitatively validate our image-based methods for computing two classic stability measures, CoMtoCoP and CoMtoBoS distances, against values generated directly from laboratory-based sensor output (ground truth) using a publicly available, multi-modality (mocap, foot pressure, two-view videos), ten-subject human motion dataset. Using Leave One Subject Out (LOSO) cross-validation, experimental results show: 1) our image-based CoM estimation method (CoMNet) consistently outperforms state-of-the-art inertial sensor-based CoM estimation techniques; 2) stability computed by our image-based method combined with insole foot pressure sensor data produces consistent, strong, and statistically significant correlation with ground truth stability measures (CoMtoCoP r = 0.79 p < 0.001, CoMtoBoS r = 0.75 p < 0.001); 3) our fully image-based estimation of stability produces consistent, positive, and statistically significant correlation on the two stability metrics (CoMtoCoP r = 0.31 p < 0.001, CoMtoBoS r = 0.22 p < 0.043). Our study provides promising quantitative evidence for the feasibility of image-based stability evaluation in natural environments.


Assuntos
, Extremidade Inferior , Humanos , Fenômenos Biomecânicos , Movimento (Física)
8.
PLoS One ; 17(9): e0274141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074770

RESUMO

Human foot rigidity is thought to provide a more effective lever with which to push against the ground. Tension of the plantar aponeurosis (PA) with increased metatarsophalangeal (MTP) joint dorsiflexion (i.e., the windlass mechanism) has been credited with providing some of this rigidity. However, there is growing debate on whether MTP joint dorsiflexion indeed increases arch rigidity. Further, the arch can be made more rigid independent of additional MTP joint dorsiflexion (e.g., when walking with added mass). The purpose of the present study was therefore to compare the influence of increased MTP joint dorsiflexion with the influence of added mass on the quasi-stiffness of the midtarsal joint in walking. Participants walked with a rounded wedge under their toes to increase MTP joint dorsiflexion in the toe-wedge condition, and wore a weighted vest with 15% of their body mass in the added mass condition. Plantar aponeurosis behavior, foot joint energetics, and midtarsal joint quasi-stiffness were compared between conditions to analyze the mechanisms and effects of arch rigidity differences. Midtarsal joint quasi-stiffness was increased in the toe-wedge and added mass conditions compared with the control condition (both p < 0.001). In the toe-wedge condition, the time-series profiles of MTP joint dorsiflexion and PA strain and force were increased throughout mid-stance (p < 0.001). When walking with added mass, the time-series profile of force in the PA did not increase compared with the control condition although quasi-stiffness did, supporting previous evidence that the rigidity of the foot can be actively modulated. Finally, more mechanical power was absorbed (p = 0.006) and negative work was performed (p < 0.001) by structures distal to the rearfoot in the toe-wedge condition, a condition which displayed increased midtarsal joint quasi-stiffness. This indicates that a more rigid foot may not necessarily transfer power to the ground more efficiently.


Assuntos
, Articulação Metatarsofalângica , Fenômenos Biomecânicos , Articulações do Pé , Humanos , Caminhada
9.
J Appl Biomech ; 38(2): 69-75, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231882

RESUMO

Soft tissue moves relative to the underlying bone during locomotion. Research has shown that soft tissue motion has an effect on aspects of the dynamics of running; however, little is known about the effects of soft tissue motion on the joint kinetics. In the present study, for a single subject, soft tissue motion was modeled using wobbling components in an inverse dynamics analysis to access the effects of the soft tissue on joint kinetics at the knee and hip. The added wobbling components had little effect on the knee joint kinetics, but large effects on the hip joint kinetics. In particular, the hip joint power and net negative and net positive mechanical work at the hip was greatly underestimated when calculated with the model without wobbling components compared with that of the model with wobbling components. For example, for low-frequency wobbling conditions, the magnitude of the peak hip joint moments were 50% greater when computed accounting the wobbling masses compared with a rigid body model, while for high-frequency wobbling conditions, the peaks were within 15%. The present study suggests that soft tissue motion should not be ignored during inverse dynamics analyses of running.


Assuntos
Corrida , Fenômenos Biomecânicos , Articulação do Quadril , Humanos , Cinética , Articulação do Joelho , Locomoção
10.
J Biomech ; 133: 110982, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131678

RESUMO

In a state-space representation of the equations of motion for a system of rigid bodies one component of these equations is the so-called inertia matrix. This matrix can be used for inverse dynamics and its inversion is necessary to perform direct dynamics analyses, and to perform induced acceleration analyses. The contents of the inertia matrix are a function of the lengths of the segments, the locations of the centers of masses, segment masses, segment moments of inertia, and joint angles. It is demonstrated that the inertia matrix is an ill-conditioned matrix meaning that, for example, small errors in joint moments cause correspondingly larger errors in the joint accelerations computed using the matrix. The ill-condition of the matrix can be quantified by computing its condition number; the magnitude of the error is bounded by the condition number. It is demonstrated for a two-rigid body system representing the upper-limb that the configuration of the system influences the magnitude of the condition number, and that because the mass and moment of inertia of the distal segment is smaller than the proximal segment a relatively low condition number is produced. For a three-segment system representing the shanks, thighs, and HAT (head, arms, and trunk) the closer each segment rotated towards the adjacent segment the lower the condition number. The magnification of errors due to the inertia matrix arise from the inertial properties of the human body segments and their configuration, not from errors per se in the components of that matrix.


Assuntos
Braço , Perna (Membro) , Aceleração , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Coxa da Perna
11.
J Appl Biomech ; 37(6): 578, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872066
12.
J Biomech ; 123: 110527, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34077770

RESUMO

Human running can be simulated using a simple model called the spring-loaded inverted pendulum (SLIP). The SLIP model predicts some aspects of running including the self-stabilizing properties of running. In human locomotion energy is dissipated due to the passive motion of the soft tissue. However, little is known about the effects of this energy dissipation on the dynamics of running. This study utilizes a SLIP model with an additional spring-mass-damper system to study the effects of energy dissipation due to an additional wobbling mass on the self-stabilizing properties of human running. It was found that the additional spring-mass-damper system increased the self-stabilizing properties of the SLIP model and increased its robustness to perturbations. This suggests that increasing stability is one of the effects of energy dissipation due to the passive motion of a wobbling mass during human running.


Assuntos
Modelos Biológicos , Corrida , Fenômenos Biomecânicos , Humanos , Locomoção
13.
J Appl Biomech ; 37(3): 272-276, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690167

RESUMO

Time-differentiating kinematic signals from optical motion capture amplifies the inherent noise content of those signals. Commonly, biomechanists address this problem by applying a Butterworth filter with the same cutoff frequency to all noisy displacement signals prior to differentiation. Nonstationary signals, those with time-varying frequency content, are widespread in biomechanics (eg, those containing an impact) and may necessitate a different filtering approach. A recently introduced signal filtering approach wherein signals are divided into sections based on their energy content and then Butterworth filtered with section-specific cutoff frequencies improved second derivative estimates in a nonstationary kinematic signal. Utilizing this signal-section filtering approach for estimating running vertical ground reaction forces saw more of the signal's high-frequency content surrounding heel strike maintained without allowing inappropriate amounts of noise contamination in the remainder of the signal. Thus, this signal-section filtering approach resulted in superior estimates of vertical ground reaction forces compared with approaches that either used the same filter cutoff frequency across the entirety of each signal or across the entirety of all signals. Filtering kinematic signals using this signal-section filtering approach is useful in processing data from tasks containing an impact when accurate signal second derivative estimation is of interest.


Assuntos
Benchmarking , Corrida , Fenômenos Biomecânicos , Calcanhar , Humanos
14.
J Biomech Eng ; 143(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454726

RESUMO

To examine segment and joint attitudes when using image-based motion capture, it is necessary to determine the rigid body transformation parameters from an inertial reference frame to a reference frame fixed in a body segment. Determine the rigid body transformation parameters must account for errors in the coordinates measured in both reference frames, a total least-squares problem. This study presents a new derivation that shows that a singular value decomposition-based method provides a total least-squares estimate of rigid body transformation parameters. The total least-squares method was compared with an algebraic method for determining rigid body attitude (TRIAD method). Two cases were examined: case 1 where the positions of a marker cluster contained noise after the transformation, and case 2 where the positions of a marker cluster contained noise both before and after the transformation. The white noise added to position data had a standard deviation from zero to 0.002 m, with 101 noise levels examined. For each noise level, 10 000 criterion attitude matrices were generated. Errors in estimating rigid body attitude were quantified by computing the angle, error angle, required to align the estimated rigid body attitude with the actual rigid body attitude. For both methods and cases, as the noise level increased the error angle increased, with errors larger for case 2 compared with case 1. The singular value decomposition (SVD)-based method was superior to the TRIAD algorithm for all noise levels and both cases, and provided a total least-squares estimate of body attitude.


Assuntos
Movimento , Fenômenos Biomecânicos
15.
Bioinspir Biomim ; 16(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33352541

RESUMO

Humans are made up of mostly soft tissue that vibrates during locomotion. This vibration has been shown to store and dissipate energy during locomotion. However, the effects of soft tissue vibration (wobbling masses) on the dynamics of bipedal walking have not been assessed in terms of stability. Given that much of the human body is vibrating just following foot-ground contact, it may have dynamic implications on the stability of walking. A rigid bipedal walker and a bipedal walker with soft tissue were simulated to quantify the effects of soft tissue vibration on gait periodicity, orbital stability, global stability, and robustness to uneven terrain. It was found that moderate amounts of energy dissipation resulted in much more stable walking dynamics relative to that of a rigid bipedal walker.


Assuntos
Locomoção , Vibração , Fenômenos Biomecânicos , Marcha , Humanos , Caminhada
16.
J Dev Orig Health Dis ; 12(3): 357-372, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32746960

RESUMO

The Developmental Origins of Health and Disease (DOHaD) framework aims to understand how environmental exposures in early life shape lifecycle health. Our understanding and the ability to prevent poor health outcomes and enrich for resiliency remain limited, in part, because exposure-outcome relationships are complex and poorly defined. We, therefore, aimed to determine the major DOHaD risk and resilience factors. A systematic approach with a 3-level screening process was used to conduct our Rapid Evidence Review following the established guidelines. Scientific databases using DOHaD-related keywords were searched to capture articles between January 1, 2009 and April 19, 2019. A final total of 56 systematic reviews/meta-analyses were obtained. Studies were categorized into domains based on primary exposures and outcomes investigated. Primary summary statistics and extracted data from the studies are presented in Graphical Overview for Evidence Reviews diagrams. There was substantial heterogeneity within and between studies. While global trends showed an increase in DOHaD publications over the last decade, the majority of data reported were from high-income countries. Articles were categorized under six exposure domains: Early Life Nutrition, Maternal/Paternal Health, Maternal/Paternal Psychological Exposure, Toxicants/Environment, Social Determinants, and Others. Studies examining social determinants of health and paternal influences were underrepresented. Only 23% of the articles explored resiliency factors. We synthesized major evidence on relationships between early life exposures and developmental and health outcomes, identifying risk and resiliency factors that influence later life health. Our findings provide insight into important trends and gaps in knowledge within many exposures and outcome domains.


Assuntos
Experiências Adversas da Infância , Doença/etiologia , Criança , Desenvolvimento Infantil , Humanos , Metanálise como Assunto , Resiliência Psicológica , Fatores de Risco , Revisões Sistemáticas como Assunto
17.
BMC Biomed Eng ; 2: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903359

RESUMO

The three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the utility of quaternions will be reviewed and elaborated. The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of four variables compared with Cardan or Euler angles (which require three variables). A quaternion, q = (q 0, q 1, q 2, q 3), can be considered a rotation (Ω = 2 cos-1(q 0)), about an axis defined by a unit direction vector q 1 / sin Ω 2 q 2 / sin Ω 2 q 3 / sin Ω 2 . The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or Codman's paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which means numerical procedures for orientation averaging and interpolation must take account of the shape of this surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional orientation derivatives is reviewed. The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple averaging and interpolation gives it great utility for the kinematic analysis of human movement.

18.
J Biomech ; 111: 109976, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32858430

RESUMO

Rigid body attitude and single-joint kinematics are typically expressed using three Cardan angles which represent rotations in anatomical planes. It was recently shown in the Biomechanics literature that Cardan angles inaccurately estimate true mean attitude due to an important mathematical inadequacy: attitude under-representation; at least four quantities are needed to unambiguously specify attitude. Directional statistics, which is the multivariate generalization of (univariate) circular statistics, solves this problem using four-dimensional unit vectors and the mathematics of hyperspherical geometry. The purpose of this study was to compare the results of directional analysis to the results of uni- and multi-variate Cardan analysis for representative joint kinematic data during gait. We analyzed hip, knee and pelvis data from three open datasets and report exemplary results for knee kinematics in v-cut vs. side shuffle tasks. We also conducted Monte Carlo simulations, using synthetic data with precisely controlled true angular effects, to systematically compare directional and Cardan analyses. Results show that directional analysis yielded considerably smaller p values (p<0.03) than Cardan analysis (p>0.055) for the exemplary dataset. Simulation results confirmed that directional analysis is considerably more powerful (i.e., much more able to detect true angular effects) than both uni- and multi-variate Cardan analysis. These results suggest that directional statistics should be used to analyse attitude, including 3D joint kinematics, to avoid false negatives.


Assuntos
Marcha , Movimento , Fenômenos Biomecânicos , Humanos , Joelho , Articulação do Joelho , Pelve
19.
Nutrients ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019222

RESUMO

Spontaneous preterm birth is associated with vaginal microbial dysbiosis. As certain strains of lactobacilli help restore homeostasis in non-pregnant women, the goal was to determine the effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 administered orally, twice daily for 12 weeks on the vaginal microbiota, cytokines and chemokines of low-risk pregnant women. A double-blind, placebo-controlled, randomized trial comparing probiotic lactobacilli to placebo daily was performed in 86 asymptomatic pregnant women who had an Intermediate or Bacterial Vaginosis Nugent score at 13 weeks. After drop outs, 32 women receiving probiotics and 34 receiving placebo completed the study. The Nugent score returned to normal in 30% of the women in both groups at 28 weeks and was maintained until 35 weeks. The majority of subjects had normal pregnancy outcomes. Ninety-three bacterial species were detected at 13 weeks, with Lactobacillus iners, Lactobacillus crispatus, Gardnerella vaginalis and Atopobium vaginae being the most abundant across pregnancy. There was no difference in the Shannon diversity index between the probiotic and placebo groups at 13, 28 or 35 weeks. Almost all subjects consumed fermented foods and many of the organisms in the vagina are also known to be present in fermented foods. Interleukin-4 in the placebo group and Interleukin-10 in both probiotic and placebo groups increased slightly at 28 weeks but were not different at 35 weeks when compared to 13 weeks. In conclusion, this study showed no adverse issues resulting from 12 week use of probiotic Lactobacillus strains GR-1 and RC-14 during pregnancy in women at low risk for premature birth. The vaginal microbiota demonstrated flux irrespective of this oral probiotic administration.


Assuntos
Lacticaseibacillus rhamnosus , Limosilactobacillus reuteri , Complicações Infecciosas na Gravidez/terapia , Probióticos/administração & dosagem , Vaginose Bacteriana/terapia , Administração Oral , Adulto , Quimiocinas/sangue , Citocinas/sangue , Método Duplo-Cego , Disbiose/sangue , Disbiose/complicações , Disbiose/terapia , Feminino , Humanos , Microbiota , Gravidez , Complicações Infecciosas na Gravidez/sangue , Complicações Infecciosas na Gravidez/microbiologia , Nascimento Prematuro/microbiologia , Nascimento Prematuro/prevenção & controle , Resultado do Tratamento , Vagina/microbiologia , Vaginose Bacteriana/sangue , Vaginose Bacteriana/complicações
20.
J Biomech ; 101: 109619, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31952818

RESUMO

Computing time derivatives is a frequent stage in the processing of biomechanical data. Unfortunately, differentiation amplifies the high frequency noise inherent within the signal hampering the accuracy of signal derivatives. A low-pass Butterworth filter is commonly used to reduce the sampled signal noise prior to differentiation. One hurdle lies in selecting an appropriate filter cut-off frequency which retains the signal of interest while reducing deleterious noise. Most biomechanics data processing approaches utilize the same cut-off frequency for the whole sampled signal, but the frequency components of a signal can vary with time. To accommodate such signals, the Automatic Segment Filtering Procedure (ASFP) is proposed which uses different automatically determined Butterworth filter cut-off frequencies for separate segments of a sampled signal. The Teager-Kaiser Energy Operator of the signal is computed and used to determine segments of the signal with different energy content. The Autocorrelation-Based Procedure (ABP) is used on each of these segments to determine filter cut-off frequencies. This new procedure was evaluated by estimating acceleration values from the test data set of Dowling (1985). The ASFP produced a root mean square error (RMSE) of 16.4 rad s-2 (26.6%) whereas a single ABP determined filter cut-off frequency applied to the whole Dowling (1985) signal, representing the common approach, produced a RMSE of 25.5 rad s-2 (41.4%). As a point of comparison, a Generalized Cross-Validated Quintic Spline, a common non-Butterworth filter, produced a RMSE of 23.6 rad s-2 (38.4%). This new automatic approach is advantageous in biomechanics for preserving high frequency content of non-stationary signals.


Assuntos
Fenômenos Mecânicos , Processamento de Sinais Assistido por Computador , Aceleração , Automação , Fenômenos Biomecânicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...