Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578494

RESUMO

The study addressed the production of a hydrogel nanofiber skin cover and included the fabrication of hydrogel nanofibers from a blend of polyvinyl alcohol and alginate. The resulting fibrous layer was then crosslinked with glutaraldehyde, and, after 4 h of crosslinking, although the gelling component, i.e., the alginate, crosslinked, the polyvinyl alcohol failed to do so. The experiment included the comparison of the strength and ductility of the layers before and after crosslinking. It was determined that the fibrous layer following crosslinking evinced enhanced mechanical properties, which acted to facilitate the handling of the material during its application. The subsequent testing procedure proved that the fibrous layer was not cytotoxic. The study further led to the production of a modified hydrogel nanofiber layer that combined polyvinyl alcohol with alginate and albumin. The investigation of the fibrous layers produced determined that following contact with water the polyvinyl alcohol dissolved leading to the release of the albumin accompanied by the swelling of the alginate and the formation of a hydrogel.

2.
Polymers (Basel) ; 13(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202197

RESUMO

The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function.

3.
J Nanosci Nanotechnol ; 19(11): 7251-7260, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039883

RESUMO

In the present study, PCL (polycaprolactone) nanofibres were produced by the electrospinning method. The use of PCL electrospun biopolymer in biomedical applications has attracted considerable interest due to its chemical resistance, biodegradability, biocompatibility, and non-toxic characteristics. However, the hydrophobic nature of PCL polymer restricts the useage of PCL nanofibres for the cell adhesion and absorption. A hydrophilic and biocompatible PCL electrospun mat with a low water contact angle is an attractive strategy for development in tissue engineering and wound dressing. In this study, we demonstrate a feasible and simple method to produce hydrophilic PCL nanofibres for possible application in wound dressing. Chloroform/ethanol (EtOH) and chloroform/dimethylformamide (DMF) mixtures were used as two different solvent systems. The impact of the polymeric solution concentration, applied voltage, and solvent mixtures on the fibre surface morphology and water contact angle was investigated. Consequently, bead structures were observed at low concentrations but disappeared with increases in the concentration. It was observed that the size of beads decreased and the diameter of fibres increased with increasing voltage. The wettability of the webs changed from hydrophobic to hydrophilic with changes of the polymer concentration. The contact angle of the nanofibre mats decreased in both solvent systems as the concentration increased. The results showed that the lowest contact angle was obtained in 24% wt. PCL+chloroform/EtOH solution and was 68°. The highest contact angle was obtained in 4% wt. PCL+chloroform/EtOH solution and was 112°. Using this method, the surface hydrophilicity of the PCL nanofibres improved easily without any surface treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...