Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 363(1): 114-125, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28790194

RESUMO

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of oxidative stress and cellular repair and can be activated through inhibition of its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (Keap1). Several small molecule disrupters of the Nrf2-Keap1 complex have recently been tested and/or approved for human therapeutic use but lack either potency or selectivity. The main goal of our work was to develop a potent, selective activator of NRF2 as protection against oxidative stress. In human bronchial epithelial cells, our Nrf2 activator, 3-(pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2H-chromen-2-one (PSTC), induced Nrf2 nuclear translocation, Nrf2-regulated gene expression, and downstream signaling events, including induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme activity and heme oxygenase-1 protein expression, in an Nrf2-dependent manner. As a marker of subsequent functional activity, PSTC restored oxidant (tert-butyl hydroperoxide)-induced glutathione depletion. The compound's engagement of the Nrf2 signaling pathway translated to an in vivo setting, with induction of Nrf2-regulated gene expression and NQO1 enzyme activity, as well as restoration of oxidant (ozone)-induced glutathione depletion, occurring in the lungs of PSTC-treated rodents. Under disease conditions, PSTC engaged its target, inducing the expression of Nrf2-regulated genes in human bronchial epithelial cells derived from patients with chronic obstructive pulmonary disease, as well as in the lungs of cigarette smoke-exposed mice. Subsequent to the latter, a dose-dependent inhibition of cigarette smoke-induced pulmonary inflammation was observed. Finally, in contrast with bardoxolone methyl and sulforaphane, PSTC did not inhibit interleukin-1ß-induced nuclear factor-κB translocation or insulin-induced S6 phosphorylation in human cells, emphasizing the on-target activity of this compound. In summary, we characterize a potent, selective Nrf2 activator that offers protection against pulmonary oxidative stress in several cellular and in vivo models.


Assuntos
Cumarínicos/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sulfonas/uso terapêutico , Animais , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Cumarínicos/administração & dosagem , Cumarínicos/sangue , Modelos Animais de Doenças , Descoberta de Drogas , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Células HEK293 , Humanos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , Ozônio/toxicidade , Pneumonia/etiologia , Pneumonia/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , Ratos Wistar , Fumar/efeitos adversos , Sulfonas/administração & dosagem , Sulfonas/sangue , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...