Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Funct Genomics ; 14(2): 31-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23535894

RESUMO

Import-Karyopherin or Importin proteins bind nuclear localization signals (NLSs) to mediate the import of proteins into the cell nucleus. Karyopherin ß2 or Kapß2, also known as Transportin, is a member of this transporter family responsible for the import of numerous RNA binding proteins. Kapß2 recognizes a targeting signal termed the PY-NLS that lies within its cargos to target them through the nuclear pore complex. The recognition of PY-NLS by Kapß2 is conserved throughout eukaryotes. Kap104, the Kapß2 homolog in Saccharomyces cerevisiae, recognizes PY-NLSs in cargos Nab2, Hrp1, and Tfg2. We have determined the crystal structure of Kapß2 bound to the PY-NLS of the mRNA processing protein Nab2 at 3.05-Å resolution. A seven-residue segment of the PY-NLS of Nab2 is observed to bind Kapß2 in an extended conformation and occupies the same PY-NLS binding site observed in other Kapß2·PY-NLS structures.


Assuntos
Sinais de Localização Nuclear/química , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , beta Carioferinas/química , Sequência de Aminoácidos , Sítios de Ligação , Núcleo Celular/metabolismo , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo
2.
Plant Biotechnol J ; 10(1): 12-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21554529

RESUMO

Different combinations of three rate-limiting enzymes in phytosterol biosynthesis, the Arabidopsis thaliana hydroxyl methylglutaryl CoA1 (HMGR1) catalytic subunit linked to either constitutive or seed-specific ß-conglycinin promoter, and the Glycine max sterol methyltransferase1 (SMT1) and sterol methyltransferase2-2 (SMT2-2) genes, under the control of seed-specific Glycinin-1 and Beta-phaseolin promoters, respectively, were engineered in soybean plants. Mature seeds of transgenic plants displayed modest increases in total sterol content, which points towards a tight control of phytosterol biosynthesis. However, in contrast to wild-type seeds that accumulated about 35% of the total sterol in the form of intermediates, in the engineered seeds driven by a seed-specific promoter, metabolic flux was directed to Δ(5) -24-alkyl sterol formation (99% of total sterol). The engineered effect of end-product sterol (sitosterol, campesterol, and stigmasterol) over-production in soybean seeds resulted in an approximately 30% increase in overall sitosterol synthesis, a desirable trait for oilseeds and human health. In contradistinction, increased accumulation of cycloartenol and 24(28)-methylencylartanol (55% of the total sterol) was detected in plants harbouring the constitutive t-HMGR1 gene, consistent with the previous studies. Our results support the possibility that metabolic flux of the phytosterol family pathway is differentially regulated in leaves and seeds.


Assuntos
Glycine max/metabolismo , Engenharia Metabólica/métodos , Fitosteróis/metabolismo , Característica Quantitativa Herdável , Southern Blotting , Fitosteróis/biossíntese , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Glycine max/genética , Transgenes/genética
3.
Arch Biochem Biophys ; 481(2): 210-8, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19014901

RESUMO

Growth of Cryptococcus neoformans was inhibited by nine nitrogen and sulfur-containing sterols with a heteroatom positioned at C3, C7, C24, C25 or C32 in the lanostane frame. Analysis of the sterol composition of control and treated cells by GC-MS and (1)H NMR has proven that the C-methylation reaction catalyzed by the sterol 24-C-methyltransferase (24-SMT) is the crucial first step in a kinetically favored pathway that fails to include obtusifoliol or zymosterol as intermediates. Cultures fed [methyl-(2)H(3)]methionine led to two deuterium atoms into each of the newly biosynthesized sterols forming a route lanosterol, eburicol (24(28)-methylene-24,25-dihydrolanosterol), 32-noreburicol and ergost-7-enol to ergosterol. Examination of the substrate specificity of a soluble 24-SMT from C. neoformans showed lanosterol to be the optimal acceptor molecule. Incubation with the test compounds generated induced amounts of lanosterol, eburicol or 32-noreburicol concurrent with a decrease of ergosterol. Among them 24(R,S),25-epiminolanosterol (inhibitor of 24-SMT) showed the most potent in vitro antifungal activity comparable to those of itraconazole (inhibitor of the 14-demethylase). Taken together, these data indicate that treatment with substrate-based inhibitors of 24-SMT, a catalyst not found in humans, can disrupt ergosterol homeostasis involved with fungal growth and therefore these compounds can provide leads for rational drug design of opportunistic pathogens.


Assuntos
Cryptococcus neoformans/enzimologia , Ergosterol/biossíntese , Ergosterol/farmacologia , Proteínas Fúngicas/metabolismo , Lanosterol/análogos & derivados , Metionina/farmacologia , Metiltransferases/metabolismo , Esteróis/metabolismo , Colesterol/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/isolamento & purificação , Homeostase , Cinética , Lanosterol/farmacologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/isolamento & purificação , Microssomos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...