Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 55(93): 14058-14061, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31691686

RESUMO

All hydrogen atoms of the NH3 in [Mn(depe)2(CO)(NH3)]+ are abstracted by 2,4,6-tri-tert-butylphenoxyl radical, resulting in the isolation of a rare cyclophosphazenium cation, [(Et2P(CH2)2PEt2)N]+, in 76% yield. An analogous reaction is observed for [Mn(dppe)2(CO)(NH3)]+. Computations suggest insertion of NHx into a Mn-P bond provides the thermodynamic driving force. Contextualization of this reaction provides insights on catalyst design and breaking strong N-H bonds.

2.
Angew Chem Int Ed Engl ; 58(34): 11618-11624, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31115120

RESUMO

Catalysts for the oxidation of NH3 are critical for the utilization of NH3 as a large-scale energy carrier. Molecular catalysts capable of oxidizing NH3 to N2 are rare. This report describes the use of [Cp*Ru(PtBu 2 NPh 2 )(15 NH3 )][BArF 4 ], (PtBu 2 NPh 2 =1,5-di(phenylaza)-3,7-di(tert-butylphospha)cyclooctane; ArF =3,5-(CF3 )2 C6 H3 ), to catalytically oxidize NH3 to dinitrogen under ambient conditions. The cleavage of six N-H bonds and the formation of an N≡N bond was achieved by coupling H+ and e- transfers as net hydrogen atom abstraction (HAA) steps using the 2,4,6-tri-tert-butylphenoxyl radical (t Bu3 ArO. ) as the H atom acceptor. Employing an excess of t Bu3 ArO. under 1 atm of NH3 gas at 23 °C resulted in up to ten turnovers. Nitrogen isotopic (15 N) labeling studies provide initial mechanistic information suggesting a monometallic pathway during the N⋅⋅⋅N bond-forming step in the catalytic cycle.

3.
Faraday Discuss ; 215(0): 123-140, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-30993272

RESUMO

To explore the influence of a biologically inspired second and outer coordination sphere on Rh-bis(diphosphine) CO2 hydrogenation catalysts, a series of five complexes were prepared by varying the substituents on the pendant amine in the P(Et)2CH2NRCH2P(Et)2 ligands (PEtNRPEt), where R consists of methyl ester modified amino acids, including three neutral (glycine methyl ester (GlyOMe), leucine methyl ester (LeuOMe), and phenylalanine methyl ester (PheOMe)), one acidic (aspartic acid dimethyl ester (AspOMe)) and one basic (histidine methyl ester (MeHisOMe)) amino acid esters. The turnover frequencies (TOFs) for CO2 hydrogenation for each of these complexes were compared to those of the non-amino acid containing [Rh(depp)2]+ (depp) and [Rh(PEtNMePEt)2]+ (NMe) complexes. Each complex is catalytically active for CO2 hydrogenation to formate under mild conditions in THF. Catalytic activity spanned a factor of four, with the most active species being the NMe catalyst, while the slowest were the GlyOMe and the AspOMe complexes. When compared to a similar set of catalysts with phenyl-substituted phosphorous groups, a clear contribution of the outer coordination sphere is seen for this family of CO2 hydrogenation catalysts.


Assuntos
Aminoácidos/química , Dióxido de Carbono/química , Complexos de Coordenação/química , Fosfinas/química , Ródio/química , Complexos de Coordenação/síntese química , Técnicas Eletroquímicas , Hidrogenação , Conformação Molecular
4.
Chem Sci ; 10(5): 1410-1418, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30842818

RESUMO

Counterions can play an active role in chemical reactivity, modulating reaction pathways, energetics and selectivity. We investigated the tautomeric equilibrium resulting from protonation of Fe(PEtNMePEt)(CO)3 (PEtNMePEt = (Et2PCH2)2NMe) at Fe or N. Protonation of Fe(PEtNMePEt)(CO)3 by [(Et2O)2H]+[B(C6F5)4]- occurs at the metal to give the iron hydride [Fe(PEtNMePEt)(CO)3H]+[B(C6F5)4]-. In contrast, treatment with HBF4·OEt2 gives protonation at the iron and at the pendant amine. Both the FeH and NH tautomers were characterized by single crystal X-ray diffraction. Addition of excess BF4 - to the equilibrium mixture leads to the NH tautomer being exclusively observed, due to NH···F hydrogen bonding. A quantum chemical analysis of the bonding properties of these systems provided a quantification of hydrogen bonding of the NH to BF4 - and to OTf-. Treatment of Fe(PEtNMePEt)(CO)3 with excess HOTf gives a dicationic complex where both the iron and nitrogen are protonated. Isomerization of the dicationic complex was studied by NOESY NMR spectroscopy.

5.
J Am Chem Soc ; 141(5): 1871-1876, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30669844

RESUMO

While diamagnetic transition metal complexes that bind and split H2 have been extensively studied, paramagnetic complexes that exhibit this behavior remain rare. The square planar S = 1/2 FeI(P4N2)+ cation (FeI+) reversibly binds H2/D2 in solution, exhibiting an inverse equilibrium isotope effect of KH2/ KD2 = 0.58(4) at -5.0 °C. In the presence of excess H2, the dihydrogen complex FeI(H2)+ cleaves H2 at 25 °C in a net hydrogen atom transfer reaction, producing the dihydrogen-hydride trans-FeII(H)(H2)+. The proposed mechanism of H2 splitting involves both intra- and intermolecular steps, resulting in a mixed first- and second-order rate law with respect to initial [FeI+]. The key intermediate is a paramagnetic dihydride complex, trans-FeIII(H)2+, whose weak FeIII-H bond dissociation free energy (calculated BDFE = 44 kcal/mol) leads to bimetallic H-H homolysis, generating trans-FeII(H)(H2)+. Reaction kinetics, thermodynamics, electrochemistry, EPR spectroscopy, and DFT calculations support the proposed mechanism.

6.
Angew Chem Int Ed Engl ; 57(41): 13523-13527, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30117247

RESUMO

Oxidation of H2 in a fuel cell converts the chemical energy of the H-H bond into electricity. Electrocatalytic oxidation of H2 by molecular catalysts typically requires one metal to perform multiple chemical steps: bind H2 , heterolytically cleave H2 , and then undergo two oxidation and two deprotonation steps. The electrocatalytic oxidation of H2 by a cooperative system using Cp*Cr(CO)3 H and [Fe(diphosphine)(CO)3 ]+ has now been invetigated. A key step of the proposed mechanism is a rarely observed metal-to-metal hydrogen atom transfer from the Cr-H complex to the Fe, forming an Fe-H complex that is deprotonated and then oxidized electrochemically. This "division of chemical labor" features Cr interacting with H2 to cleave the H-H bond, while Fe interfaces with the electrode. Neither metal is required to heterolytically cleave H2 , so this system provides a very unusual example of a homolytic reaction being a key step in a molecular electrocatalytic process.

7.
Philos Trans A Math Phys Eng Sci ; 375(2101)2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28739961

RESUMO

This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'.

8.
Inorg Chem ; 55(7): 3401-12, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26999632

RESUMO

The complexes Fe2(pdt)(CNR)6 (pdt(2-) = CH2(CH2S(-))2) were prepared by thermal substitution of the hexacarbonyl complex with the isocyanides RNC for R = C6H4-4-OMe (1), C6H4-4-Cl (2), Me (3). These complexes represent electron-rich analogues of the parent Fe2(pdt)(CO)6. Unlike most substituted derivatives of Fe2(pdt)(CO)6, these isocyanide complexes are sterically unencumbered and have the same idealized symmetry as the parent hexacarbonyl derivatives. Like the hexacarbonyls, the stereodynamics of 1-3 involve both turnstile rotation of the Fe(CNR)3 as well as the inversion of the chair conformation of the pdt ligand. Structural studies indicate that the basal isocyanide has nonlinear CNC bonds and short Fe-C distances, indicating that they engage in stronger Fe-C π-backbonding than the apical ligands. Cyclic voltammetry reveals that these new complexes are far more reducing than the hexacarbonyls, although the redox behavior is complex. Estimated reduction potentials are E1/2 ≈ -0.6 ([2](+/0)), -0.7 ([1](+/0)), and -1.25 ([3](+/0)). According to DFT calculations, the rotated isomer of 3 is only 2.2 kcal/mol higher in energy than the crystallographically observed unrotated structure. The effects of rotated versus unrotated structure and of solvent coordination (THF, MeCN) on redox potentials were assessed computationally. These factors shift the redox couple by as much as 0.25 V, usually less. Compounds 1 and 2 protonate with strong acids to give the expected µ-hydrides [H1](+) and [H2](+). In contrast, 3 protonates with [HNEt3]BAr(F)4 (pKa(MeCN) = 18.7) to give the aminocarbyne [Fe2(pdt)(CNMe)5(µ-CN(H)Me)](+) ([3H](+)). According to NMR measurements and DFT calculations, this species adopts an unsymmetrical, rotated structure. DFT calculations further indicate that the previously described carbyne complex [Fe2(SMe)2(CO)3(PMe3)2(CCF3)](+) also adopts a rotated structure with a bridging carbyne ligand. Complex [3H](+) reversibly adds MeNC to give [Fe2(pdt)(CNR)6(µ-CN(H)Me)](+) ([3H(CNMe)](+)). Near room temperature, [3H](+) isomerizes to the hydride [(µ-H)Fe2(pdt)(CNMe)6](+) ([H3](+)) via a first-order pathway.


Assuntos
Complexos de Coordenação/química , Cianetos/química , Elétrons , Compostos Férricos/química , Prótons , Carbolinas/química , Cristalografia por Raios X , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares
9.
Inorg Chem ; 55(2): 419-31, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26421729

RESUMO

A new class of synthetic models for the active site of [NiFe]-hydrogenases are described. The Ni(I/II)(SCys)2 and Fe(II)(CN)2CO sites are represented with (RC5H4)Ni(I/II) and Fe(II)(diphos)(CO) modules, where diphos = 1,2-C2H4(PPh2)2(dppe) or cis-1,2-C2H2(PPh2)2(dppv). The two bridging thiolate ligands are represented by CH2(CH2S)2(2-) (pdt(2-)), Me2C(CH2S)2(2-) (Me2pdt(2-)), and (C6H5S)2(2-). The reaction of Fe(pdt)(CO)2(dppe) and [(C5H5)3Ni2]BF4 affords [(C5H5)Ni(pdt)Fe(dppe)(CO)]BF4 ([1a]BF4). Monocarbonyl [1a]BF4 features an S = 0 Ni(II)Fe(II) center with five-coordinated iron, as proposed for the Ni-SIa state of the enzyme. One-electron reduction of [1a](+) affords the S = 1/2 derivative [1a](0), which, according to density functional theory (DFT) calculations and electron paramagnetic resonance and Mössbauer spectroscopies, is best described as a Ni(I)Fe(II) compound. The Ni(I)Fe(II) assignment matches that for the Ni-L state in [NiFe]-hydrogenase, unlike recently reported Ni(II)Fe(I)-based models. Compound [1a](0) reacts with strong acids to liberate 0.5 equiv of H2 and regenerate [1a](+), indicating that H2 evolution is catalyzed by [1a](0). DFT calculations were used to investigate the pathway for H2 evolution and revealed that the mechanism can proceed through two isomers of [1a](0) that differ in the stereochemistry of the Fe(dppe)CO center. Calculations suggest that protonation of [1a](0) (both isomers) affords Ni(III)-H-Fe(II) intermediates, which represent mimics of the Ni-C state of the enzyme.


Assuntos
Hidrogenase/química , Níquel/química , Catálise , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Mossbauer , Termodinâmica
10.
Inorg Chem ; 53(8): 4243-9, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24684697

RESUMO

This study describes the characterization of a mixed-valence Ru(II)/Ni(I) complex, a structural model for the Ni-L state of the [NiFe]hydrogenases. One-electron oxidation of (cymene)Ru(µ-pdt)Ni(diphos) ([1](0), diphos = dppe, C2H4(PPh2)2; [2](0), diphos = dcpe, C2H4(P(C6H11)2)2] affords the mixed-valence cations [(cymene)Ru(pdt)Ni(diphos)](+) ([1](+) and [2](+)). Crystallographic and spectroscopic measurements indicate that these cations are described as Ru(II)/Ni(I). Although [1](0) and [1](+) are very similar structurally, the following changes are notable: the Ni-P distances elongate upon oxidation, and the Ru-Ni distance changes insignificantly. The molecular and electronic structures of the Ni center in [1](+) approaches that observed in the [NiFe]hydrogenases. Density functional theory calculations indicate that [1](0) is best described as Ru(II)/Ni(0), consistent with its oxidation to Ru(II)/Ni(I) in [1](+). The fast electron self-exchange rate of 10(7) M(-1) s(-1) between [1](0) and [1](+) suggests minor reorganization, more consistent with a Ni(0)/Ni(I) oxidation state change than a Ni(I)/Ni(II) couple. In solution, [1](+) slowly converts to [H1](+) and [1-H](+), with the latter being a complex of the thioaldehyde SCHCH2CH2S arising from C-H activation of the pdt backbone. Treatment of [1](+) with the H-atom abstracting reagent 2,2,6,6-tetramethylpiperidine-1-oxy also gives [1-H](+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...