Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Control Release ; 362: 489-501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673308

RESUMO

Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.

2.
ACS Omega ; 4(2): 2565-2576, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459493

RESUMO

The surface assembly of 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) using silicon tetrachloride as a coupling agent was investigated using atomic force microscopy (AFM). Nanopatterned films of Si-OEP were prepared by protocols of colloidal lithography to evaluate the morphology, thickness, and molecular orientation for samples prepared on Si(111). The natural self-stacking of porphyrins can pose a challenge for molecular patterning. When making films on surfaces, porphyrins will self-associate to form co-planar configurations of random stacks of molecules. There is a tendency for the flat molecules to orient spontaneously in a side-on arrangement that is mediated by physisorption to the substrate as well as by π-π interactions between macrocycles to form a layered arrangement of packed molecules, analogous to a stack of coins. When silicon tetrachloride is introduced to the reaction vessel, the coupling between the surface and porphyrins is mediated through covalent Si-O bonding. For these studies, surface structures of Si-OEP were formed that are connected with a Si-O-Si motif to a silicon atom coordinated to the center of the porphyrin macrocycles. Protocols of colloidal lithography were used as a tool to prepare surface structures and films of Si-OEP to facilitate surface characterizations. Conceptually, by arranging the macrocycles of porphyrins with defined orientation, local AFM surface measurements can be enabled to help address mechanistic questions about how molecules self-assemble and bind to substrates.

3.
Beilstein J Nanotechnol ; 9: 1211-1219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765798

RESUMO

Nanostructures of 4-(chloromethyl)phenyltrichlorosilane (CMPS) were used as a foundation to attach and grow heterostructures of porphyrins and organosilanes. A protocol was developed with particle lithography using steps of immersion in organosilane solutions to selectively passivate the surface of Si(111) with octadecyltrichlorosilane (OTS). A methyl-terminated matrix was chosen to direct the growth of CMPS nanostructures to fill the uncovered sites of Si(111) to enable spatial confinement of the surface reaction. Silica spheres with a diameter of 500 nm were used as a surface mask to prepare nanoscopic holes within the OTS matrix film. Next, the samples were immersed in solutions of CMPS dissolved in toluene or bicyclohexane. Nanostructures of CMPS formed within the nanoholes, to furnish spatially selective sites for binding porphyrins. The samples were then characterized with AFM to evaluate the height and morphology of the CMPS nanostructures that had formed within the nanoholes of OTS. The samples were then refluxed in a porphyrin solution for selective binding to produce heterostructures. The attachment of porphyrins was evidenced by increases in the height and width of the CMPS nanopatterns. The measurements of size indicate that multiple layers of porphyrins were added. Through each step of the surface reaction the surrounding matrix of OTS showed minimal areas of nonspecific adsorption. The AFM studies provide insight into the mechanism of the self-polymerization of CMPS as a platform for constructing porphyrin heterostructures.

4.
Biomed Res Int ; 2015: 478017, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26351634

RESUMO

Detection of clinically actionable mutations in diagnostic tumour specimens aids in the selection of targeted therapeutics. With an ever increasing number of clinically significant mutations identified, tumour genetic diagnostics is moving from single to multigene analysis. As it is still not feasible for routine diagnostic laboratories to perform sequencing of the entire cancer genome, our approach was to undertake targeted mutation detection. To optimise our diagnostic workflow, we evaluated three target enrichment strategies using two next-generation sequencing (NGS) platforms (Illumina MiSeq and Ion PGM). The target enrichment strategies were Fluidigm Access Array custom amplicon panel including 13 genes (MiSeq sequencing), the Oxford Gene Technologies (OGT) SureSeq Solid Tumour hybridisation panel including 60 genes (MiSeq sequencing), and an Ion AmpliSeq Cancer Hotspot Panel including 50 genes (Ion PGM sequencing). DNA extracted from formalin-fixed paraffin-embedded (FFPE) blocks of eight previously characterised cancer cell lines was tested using the three panels. Matching genomic DNA from fresh cultures of these cell lines was also tested using the custom Fluidigm panel and the OGT SureSeq Solid Tumour panel. Each panel allowed mutation detection of core cancer genes including KRAS, BRAF, and EGFR. Our results indicate that the panels enable accurate variant detection despite sequencing from FFPE DNA.


Assuntos
Neoplasias/diagnóstico , Neoplasias/genética , DNA de Neoplasias/genética , Serviços de Diagnóstico , Formaldeído/química , Genes Neoplásicos/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética , Inclusão em Parafina/métodos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...