Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 839145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495911

RESUMO

Rice is the staple food for more than half of the world's population. In recent years, awareness of the health benefits of colored rice varieties and germinated rice has gradually increased. Riceberry rice (R), a black-purple variety, was germinated and subsequently fermented with Pleurotus ostreatus mycelium (M) to improve nutrient quality and prebiotic properties. The γ-aminobutyric acid (GABA) and ß-glucan contents were measured daily for a total of 4 days. The prebiotic activities of R, germinated Riceberry rice (GR), and germinated Riceberry rice with mycelium (GRM) were evaluated on the probiotic bacteria Pediococcus sp., Lactobacillus acidophilus, and Streptococcus lactis. Results were compared with the M treatment and with the commercial prebiotic agents: inulin and ß-glucan. The treatments were also used to evaluate growth of the pathogen Escherichia coli. The GABA content peaked after 3 days of germination. The GR sample fermented with M for 3 days had the optimal concentration of both ß-glucan and GABA. Evaluation of the prebiotic properties of rice samples and the commercial standards (inulin and ß-glucan) showed that these were enhanced on the GR and GRM treatments. Results also showed the improvement of prebiotic properties on GR as the R sample did not show any prebiotic properties in all probiotic bacteria, whereas the GR sample showed moderate prebiotic activity score of 0.40, 0.88, and 0.56 on Pediococcus sp., L. acidophilus, and S. lactis, respectively. Furthermore, the prebiotic activity of GR was improved when fermented with M. For further applications, the GRM could be used on rice-based products, such as rice flour, rice crackers, or other rice products to enhance nutritional value and improve digestive system health, especially in the elderly.

2.
Life Sci ; 276: 119129, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33515559

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.


Assuntos
Doença de Alzheimer/terapia , Terapia Genética , Imunoterapia , Preparações Farmacêuticas/administração & dosagem , Nanomedicina Teranóstica , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Animais , Gerenciamento Clínico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...