Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973614

RESUMO

Mitigating inflammation associated with the foreign body response (FBR) remains a significant challenge in enhancing the performance of implantable medical devices. Current anti-inflammatory approaches aim to suppress implant fibrosis, the major outcome of the FBR, but also inadvertently inhibit beneficial immune signalling necessary for tissue healing and vascularization. In a previous study, we demonstrated the feasibility of 'selective' immunosuppression targeting the NLRP3 inflammasome using the small molecule inhibitor MCC950, leading to reduced implant fibrosis without compromising healing and leading to enhanced vascularization. However, the clinical potential of MCC950 is severely limited due to its failure to pass Phase I clinical safety trials. This has triggered substantial efforts to develop safer analogues of NLRP3 inhibitors. Dapansutrile (OLT1177) is emerging as a leading candidate amongst current NLRP3 inhibitors, demonstrating both safety and effectiveness in a growing number of clinical indications and Phase 2 trials. While the anti-inflammatory effects of OLT1177 have been shown, validation of these effects in the context of implanted materials and the FBR have not yet been demonstrated. In this study, we show OLT1177 possesses beneficial effects on key cell types which drive FBR outcomes, including macrophages, fibroblasts, and smooth muscle cells. Evaluation of OLT1177 in a 28 day subcutaneous implantation model showed OLT1177 reduced fibrotic capsule formation while promoting implant vascularization. Mechanistic studies revealed that this occurred through activation of early pro-angiogenic markers while suppressing late-stage anti-angiogenic markers. These findings establish OLT1177 as a promising therapeutic approach for mitigating implant fibrosis while supporting vascularisation, suggesting a highly promising selective immunosuppressive strategy for the FBR warranting further research to explore its optimal integration into medical materials and devices.

2.
Adv Healthc Mater ; 12(32): e2301571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846971

RESUMO

Medical devices are a mainstay of the healthcare industry, providing clinicians with innovative tools to diagnose, monitor, and treat a range of medical conditions. For implantable devices, it is widely regarded that chronic inflammation during the foreign body response (FBR) is detrimental to device performance, but also required for tissue regeneration and host integration. Current strategies to mitigate the FBR rely on broad acting anti-inflammatory drugs, most commonly, dexamethasone (DEX), which can inhibit angiogenesis and compromise long-term device function. This study challenges prevailing assumptions by suggesting that FBR inflammation is multifaceted, and selectively targeting its individual pathways can stop implant fibrosis while preserving beneficial repair pathways linked to improved device performance. MCC950, an anti-inflammatory drug that selectively inhibits the NLRP3 inflammasome, targets pathological inflammation without compromising global immune function. The effects of MCC950 and DEX on the FBR are compared using implanted polycaprolactone (PCL) scaffolds. The results demonstrate that both DEX and MCC950 halt immune cell recruitment and cytokine release, leading to reduced FBR. However, MCC950 achieves this while supporting capillary growth and enhancing tissue angiogenesis. These findings support selective immunosuppression approaches as a potential future direction for treating the FBR and enhancing the longevity and safety of implantable devices.


Assuntos
Corpos Estranhos , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Materiais Biocompatíveis/farmacologia , Angiogênese , Inflamação/tratamento farmacológico , Inflamação/patologia , Sulfonamidas , Anti-Inflamatórios , Terapia de Imunossupressão
3.
PLoS One ; 18(8): e0290342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590291

RESUMO

Models of arterial injury in rodents have been invaluable to our current understanding of vessel restenosis and play a continuing role in the development of endovascular interventions for cardiovascular disease. Mechanical distention of the vessel wall and denudation of the vessel endothelium are the two major modes of vessel injury observed in most clinical pathologies and are critical to the reproducible modelling of progressive neointimal hyperplasia. The current models which have dominated this research area are the mouse wire carotid or femoral injury and the rat carotid balloon injury. While these elicit simultaneous distension of the vessel wall and denudation of the luminal endothelium, each model carries limitations that need to be addressed using a complementary injury model. Wire injuries in mice are highly technical and procedurally challenging due to small vessel diameters, while rat balloon injuries require permanent blood vessel ligation and disruption of native blood flow. Complementary models of vascular injury with reproducibility, convenience, and increased physiological relevance to the pathophysiology of endovascular injury would allow for improved studies of neointimal hyperplasia in both basic and translational research. In this study, we developed a new surgical model that elicits vessel distention and endothelial denudation injury using sequential steps using microforceps and a standard needle catheter inserted via arteriotomy into a rat common carotid artery, without requiring permanent ligation of branching arteries. After 2 weeks post-injury this model elicits highly reproducible neointimal hyperplasia and rates of re-endothelialisation similar to current wire and balloon injury models. Furthermore, evaluation of the smooth muscle cell phenotype profile, inflammatory response and extracellular matrix within the developing neointima, showed that our model replicated the vessel remodelling outcomes critical to restenosis and those becoming increasingly focused upon in the development of new anti-restenosis therapies.


Assuntos
Lesões do Sistema Vascular , Ratos , Camundongos , Animais , Lesões do Sistema Vascular/etiologia , Hiperplasia , Neointima , Reprodutibilidade dos Testes , Artéria Carótida Primitiva , Constrição Patológica
4.
JVS Vasc Sci ; 4: 100115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519333

RESUMO

Objective: Lifestyle choices such as tobacco and e-cigarette use are a risk factor for peripheral arterial disease (PAD) and may influence therapeutic outcomes. The effect of chronic nicotine exposure on the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) was assessed in a murine model of PAD. Methods: Mice were exposed to nicotine or phosphate-buffered saline (PBS) for 28 days, followed by induction of limb ischemia and iPSC-EC transplantation. Cells were injected into the ischemic limb immediately after induction of hindlimb ischemia and again 7 days later. Limb perfusion was assessed by laser Doppler spectroscopy, and transplant cell survival was monitored for 14 days afterward using bioluminescence imaging, followed by histological analysis of angiogenesis. Results: Transplant cell retention progressively decreased over time after implantation based on bioluminescence imaging, and there were no significant differences in cell survival between mice with chronic exposure to nicotine or PBS. However, compared with mice without nicotine exposure, mice with prior nicotine exposure had had an impaired therapeutic response to iPSC-EC therapy based on decreased vascular perfusion recovery. Mice with nicotine exposure, followed by cell transplantation, had significantly lower mean perfusion ratio after 14 days (0.47 ± 0.07) compared with mice undergoing cell transplantation without prior nicotine exposure (0.79 ± 0.11). This finding was further supported by histological analysis of capillary density, in which animals with prior nicotine exposure had a lower capillary density (45.9 ± 4.7 per mm2) compared with mice without nicotine exposure (66.5 ± 8.1 per mm2). Importantly, the ischemic limbs mice exposed to nicotine without cell therapy also showed significant impairment in perfusion recovery after 14 days, compared with mice that received PBS + iPSC-EC treatment. This result suggested that mice without chronic nicotine exposure could respond to iPSC-EC implantation into the ischemic limb by inducing perfusion recovery, whereas mice with chronic nicotine exposure did not respond to iPSC-EC therapy. Conclusions: Together, these findings show that chronic nicotine exposure adversely affects the ability of iPSC-EC therapy to promote vascular perfusion recovery and angiogenesis in a murine PAD model.

5.
Biomater Sci ; 11(17): 5893-5907, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37477446

RESUMO

Skeletal muscle regeneration remains a clinical unmet need for volumetric muscle loss and atrophy where muscle function cannot be restored to prior capacity. Current experimental approaches do not account for the complex microenvironmental factors that modulate myogenesis. In this study we developed a biomimetic tissue chip platform to systematically study the combined effects of the extracellular matrix (ECM) microenvironment and mechanical strain on myogenesis of murine myoblasts. Using stretchable tissue chips composed of collagen I (C), fibronectin (F) and laminin (L), as well as their combinations thereof, we tested the addition of mechanical strain regimens on myogenesis at the transcriptomic and translational levels. Our results show that ECMs have a significant effect on myotube formation in C2C12 murine myoblasts. Under static conditions, laminin substrates induced the longest myotubes, whereas fibronectin produced the widest myotubes. Combinatorial ECMs showed non-intuitive effects on myotube formation. Genome-wide analysis revealed the upregulation in actin cytoskeletal related genes that are suggestive of myogenesis. When mechanical strain was introduced to C + F + L combinatorial ECM substrates in the form of constant or intermittent uniaxial strain at low (5%) and high (15%) levels, we observed synergistic enhancements in myotube width, along with transcriptomic upregulation in myosin heavy chain genes. Together, these studies highlight the complex role of microenvironmental factors such as ECM interactions and strain on myotube formation and the underlying signaling pathways.


Assuntos
Fibronectinas , Laminina , Camundongos , Animais , Fibronectinas/metabolismo , Sinais (Psicologia) , Matriz Extracelular , Desenvolvimento Muscular , Músculo Esquelético , Diferenciação Celular
6.
Adv Sci (Weinh) ; 10(20): e2300521, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150865

RESUMO

Minimally invasive interventions using drug-eluting stents or balloons are a first-line treatment for certain occlusive cardiovascular diseases, but the major long-term cause of failure is neointimal hyperplasia (NIH). The drugs eluted from these devices are non-specific anti-proliferative drugs, such as paclitaxel (PTX) or sirolimus (SMS), which do not address the underlying inflammation. MCC950 is a selective inhibitor of the NLRP3-inflammasome, which drives sterile inflammation commonly observed in NIH. Additionally, in contrast to broad-spectrum anti-inflammatory drugs, MCC950 does not compromise global immune function due this selective activity. In this study, MCC950 is found to not impact the viability, integrity, or function of human coronary endothelial cells, in contrast to the non-specific anti-proliferative effects of PTX and SMS. Using an in vitro model of NLRP3-mediated inflammation in murine macrophages, MCC950 reduced IL-1ß expression, which is a key driver of NIH. In an in vivo mouse model of NIH in vascular grafts, MCC950 significantly enhanced re-endothelialization and reduced NIH compared to PTX or SMS. These findings show the effectiveness of a targeted anti-inflammatory drug-elution strategy with significant implications for cardiovascular device intervention.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Anti-Inflamatórios/uso terapêutico , Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonas/farmacologia , Sulfonas/uso terapêutico
7.
Bioengineering (Basel) ; 9(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35049746

RESUMO

Volumetric muscle loss (VML) is associated with irreversibly impaired muscle function due to traumatic injury. Experimental approaches to treat VML include the delivery of basic fibroblast growth factor (bFGF) or rehabilitative exercise. The objective of this study was to compare the effects of spatially nanopatterned collagen scaffold implants with either bFGF delivery or in conjunction with voluntary exercise. Aligned nanofibrillar collagen scaffold bundles were adsorbed with bFGF, and the bioactivity of bFGF-laden scaffolds was examined by skeletal myoblast or endothelial cell proliferation. The therapeutic efficacy of scaffold implants with either bFGF release or exercise was examined in a murine VML model. Our results show an initial burst release of bFGF from the scaffolds, followed by a slower release over 21 days. The released bFGF induced myoblast and endothelial cell proliferation in vitro. After 3 weeks of implantation in a mouse VML model, twitch force generation was significantly higher in mice treated with bFGF-laden scaffolds compared to bFGF-laden scaffolds with exercise. However, myofiber density was not significantly improved with bFGF scaffolds or voluntary exercise. In contrast, the scaffold implant with exercise induced more re-innervation than all other groups. These results highlight the differential effects of bFGF and exercise on muscle regeneration.

8.
Biomater Sci ; 9(20): 6903-6914, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34522940

RESUMO

Abdominal aortic aneurysm (AAA) is associated with the loss of vascular smooth muscle cells (SMCs) within the vessel wall. Direct delivery of therapeutic cells is challenging due to impaired mechanical integrity of the vessel wall. We hypothesized that porous collagen scaffolds can be an effective vehicle for the delivery of human-derived SMCs to the site of AAA. The purpose was to evaluate if the delivery of cell-seeded scaffolds can abrogate progressive expansion in a mouse model of AAA. Collagen scaffolds seeded with either primary human aortic SMCs or induced pluripotent stem cell derived-smooth muscle progenitor cells (iPSC-SMPs) had >80% in vitro cell viability and >75% cell penetrance through the scaffold's depth, while preserving smooth muscle phenotype. The cell-seeded scaffolds were successfully transplanted onto the murine aneurysm peri-adventitia on day 7 following AAA induction using pancreatic porcine elastase infusion. Ultrasound imaging revealed that SMC-seeded scaffolds significantly reduced the aortic diameter by 28 days, compared to scaffolds seeded with iPSC-SMPs or without cells (acellular scaffold), respectively. Bioluminescence imaging demonstrated that both cell-seeded scaffold groups had cellular localization to the aneurysm but a decline in survival with time. Histological analysis revealed that both cell-seeded scaffold groups had more SMC retention and less macrophage invasion into the medial layer of AAA lesions, when compared to the acellular scaffold treatment group. Our data suggest that scaffold-based SMC delivery is feasible and may constitute a platform for cell-based AAA therapy.


Assuntos
Aneurisma da Aorta Abdominal , Túnica Adventícia , Animais , Aneurisma da Aorta Abdominal/terapia , Células Cultivadas , Colágeno , Camundongos , Miócitos de Músculo Liso , Porosidade , Suínos
9.
Front Bioeng Biotechnol ; 9: 673212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959600

RESUMO

In recent years, the cost of drug discovery and development have been progressively increasing, but the number of drugs approved for treatment of cardiovascular diseases (CVDs) has been limited. Current in vitro models for drug development do not sufficiently ensure safety and efficacy, owing to their lack of physiological relevance. On the other hand, preclinical animal models are extremely costly and present problems of inaccuracy due to species differences. To address these limitations, tissue chips offer the opportunity to emulate physiological and pathological tissue processes in a biomimetic in vitro platform. Tissue chips enable in vitro modeling of CVDs to give mechanistic insights, and they can also be a powerful approach for drug screening applications. Here, we review recent advances in CVD modeling using tissue chips and their applications in drug screening.

10.
Mater Sci Eng C Mater Biol Appl ; 124: 112057, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947551

RESUMO

Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.


Assuntos
Bioimpressão , Coração , Tinta , Impressão Tridimensional , Engenharia Tecidual
11.
ACS Appl Mater Interfaces ; 12(51): 56908-56923, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33314916

RESUMO

Encapsulation devices are an emerging barrier technology designed to prevent the immunorejection of replacement cells in regenerative therapies for intractable diseases. However, traditional polymers used in current devices are poor substrates for cell attachment and induce fibrosis upon implantation, impacting long-term therapeutic cell viability. Bioactivation of polymer surfaces improves local host responses to materials, and here we make the first step toward demonstrating the utility of this approach to improve cell survival within encapsulation implants. Using therapeutic islet cells as an exemplar cell therapy, we show that internal surface coatings improve islet cell attachment and viability, while distinct external coatings modulate local foreign body responses. Using plasma surface functionalization (plasma immersion ion implantation (PIII)), we employ hollow fiber semiporous poly(ether sulfone) (PES) encapsulation membranes and coat the internal surfaces with the extracellular matrix protein fibronectin (FN) to enhance islet cell attachment. Separately, the external fiber surface is coated with the anti-inflammatory cytokine interleukin-4 (IL-4) to polarize local macrophages to an M2 (anti-inflammatory) phenotype, muting the fibrotic response. To demonstrate the power of our approach, bioluminescent murine islet cells were loaded into dual FN/IL-4-coated fibers and evaluated in a mouse back model for 14 days. Dual FN/IL-4 fibers showed striking reductions in immune cell accumulation and elevated levels of the M2 macrophage phenotype, consistent with the suppression of fibrotic encapsulation and enhanced angiogenesis. These changes led to markedly enhanced islet cell survival and importantly to functional integration of the implant with the host vasculature. Dual FN/IL-4 surface coatings drive multifaceted improvements in islet cell survival and function, with significant implications for improving clinical translation of therapeutic cell-containing macroencapsulation implants.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Fibrose/prevenção & controle , Ilhotas Pancreáticas/metabolismo , Polímeros/química , Sulfonas/química , Animais , Adesão Celular/efeitos dos fármacos , Fibronectinas/química , Fibronectinas/farmacologia , Luciferina de Vaga-Lumes/farmacologia , Interleucina-4/química , Interleucina-4/farmacologia , Ilhotas Pancreáticas/diagnóstico por imagem , Ilhotas Pancreáticas/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas/instrumentação , Transplante das Ilhotas Pancreáticas/métodos , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/efeitos dos fármacos , Imagem Óptica , Próteses e Implantes , Células RAW 264.7
12.
Sci Rep ; 10(1): 12836, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732927

RESUMO

Multifunctional nanocarriers (MNCs) promise to improve therapeutic outcomes by combining multiple classes of molecules into a single nanostructure, enhancing active targeting of therapeutic agents and facilitating new combination therapies. However, nanocarrier platforms currently approved for clinical use can still only carry a single therapeutic agent. The complexity and escalating costs associated with the synthesis of more complex MNCs have been major technological roadblocks in the pathway for clinical translation. Here, we show that plasma polymerized nanoparticles (PPNs), synthesised in reactive gas discharges, can bind and effectively deliver multiple therapeutic cargo in a facile and cost-effective process compatible with up scaled commercial production. Delivery of siRNA against vascular endothelial growth factor (siVEGF) at extremely low concentrations (0.04 nM), significantly reduced VEGF expression in hard-to-transfect cells when compared with commercial platforms carrying higher siRNA doses (6.25 nM). PPNs carrying a combination of siVEGF and standard of care Paclitaxel (PPN-Dual) at reduced doses (< 100 µg/kg) synergistically modulated the microenvironment of orthotopic breast tumors in mice, and significantly reduced tumor growth. We propose PPNs as a new nanomaterial for delivery of therapeutics, which can be easily functionalised in any laboratory setting without the need for additional wet-chemistry and purification steps.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Plasma , RNA Interferente Pequeno/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Feminino , Camundongos , Paclitaxel/administração & dosagem , Polimerização , RNA Interferente Pequeno/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
ACS Biomater Sci Eng ; 6(2): 995-1007, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464851

RESUMO

The functionality and durability of implanted biomaterials are often compromised by an exaggerated foreign body reaction (FBR). M1/M2 polarization of macrophages is a critical regulator of scaffold-induced FBR. Macrophage colony-stimulating factor (M-CSF), a hematopoietic growth factor, induces macrophages into an M2-like polarized state, leading to immunoregulation and promoting tissue repair. In the present study, we explored the immunomodulatory effects of surface bound M-CSF on poly-l-lactic acid (PLLA)-induced FBR. M-CSF was immobilized on the surface of PLLA via plasma immersion ion implantation (PIII). M-CSF functionalized PLLA, PLLA-only, and PLLA+PIII were assessed in an IL-1ß luciferase reporter mouse to detect real-time levels of IL-1ß expression, reflecting acute inflammation in vivo. Additionally, these different treated scaffolds were implanted subcutaneously into wild-type mice to explore the effect of M-CSF in polarization of M2-like macrophages (CD68+/CD206+), related cytokines (pro-inflammatory: IL-1ß, TNF and MCP-1; anti-inflammatory: IL-10 and TGF-ß), and angiogenesis (CD31) by immunofluorescent staining. Our data demonstrated that IL-1ß activity in M-CSF functionalized scaffolds was ∼50% reduced compared to PLLA-only at day 1 (p < 0.01) and day 2 (p < 0.05) post-implantation. There were >2.6-fold more CD206+ macrophages in M-CSF functionalized PLLA compared to PLLA-only at day 7 (p < 0.001), along with higher levels of IL-10 at both day 7 (p < 0.05) and day 14 (p < 0.01), and TGF-ß at day 3 (p < 0.05), day 7 (p < 0.05), and day 14 (p < 0.001). Lower levels of pro-inflammatory cytokines were also detected in M-CSF functionalized PLLA in the early phase of the immune response compared to PLLA-only: a ∼58% decrease at day 3 in IL-1ß; a ∼91% decrease at day 3 and a ∼66% decrease at day 7 in TNF; and a ∼60% decrease at day 7 in MCP-1. Moreover, enhanced angiogenesis inside and on/near the scaffold was observed in M-CSF functionalized PLLA compared to PLLA-only at day 3 (p < 0.05) and day 7 (p < 0.05), respectively. Overall, M-CSF functionalized PLLA enhanced CD206+ macrophage polarization and angiogenesis, consistent with lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines in early stages of the host response, indicating potential immunoregulatory functions on the local environment.


Assuntos
Corpos Estranhos , Ativação de Macrófagos , Fator Estimulador de Colônias de Macrófagos , Próteses e Implantes , Animais , Diferenciação Celular , Macrófagos , Camundongos
14.
Sci Rep ; 9(1): 17461, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767928

RESUMO

Current synthetic vascular grafts are not suitable for use in low-diameter applications. Silk fibroin is a promising natural graft material which may be an effective alternative. In this study, we compared two electrospun silk grafts with different manufacturing processes, using either water or hexafluoroisopropanol (HFIP) as solvent. This resulted in markedly different Young's modulus, ultimate tensile strength and burst pressure, with HFIP spun grafts observed to have thicker fibres, and greater stiffness and strength relative to water spun. Assessment in a rat abdominal aorta grafting model showed significantly faster endothelialisation of the HFIP spun graft relative to water spun. Neointimal hyperplasia in the HFIP graft also stabilised significantly earlier, correlated with an earlier SMC phenotype switch from synthetic to contractile, increasing extracellular matrix protein density. An initial examination of the macrophage response showed that HFIP spun conduits promoted an anti-inflammatory M2 phenotype at early timepoints while reducing the pro-inflammatory M1 phenotype relative to water spun grafts. These observations demonstrate the important role of the manufacturing process and physical graft properties in determining the physiological response. Our study is the first to comprehensively study these differences for silk in a long-term rodent model.


Assuntos
Prótese Vascular , Fibroínas , Animais , Aorta Abdominal/cirurgia , Aorta Abdominal/ultraestrutura , Bombyx , Módulo de Elasticidade , Elastina/análise , Hiperplasia , Masculino , Teste de Materiais , Microscopia Eletrônica de Varredura , Neointima , Porosidade , Propanóis , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Solventes , Resistência à Tração , Enxerto Vascular , Água
15.
JACC Basic Transl Sci ; 4(1): 56-71, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847420

RESUMO

Cardiovascular disease is an inflammatory disorder that may benefit from appropriate modulation of inflammation. Systemic treatments lower cardiac events but have serious adverse effects. Localized modulation of inflammation in current standard treatments such as bypass grafting may more effectively treat CAD. The present study investigated a bioactive vascular graft coated with the macrophage polarizing cytokine interleukin-4. These grafts repolarize macrophages to anti-inflammatory phenotypes, leading to modulation of the pro-inflammatory microenvironment and ultimately to a reduction of foreign body encapsulation and inhibition of neointimal hyperplasia development. These resulting functional improvements have significant implications for the next generation of synthetic vascular grafts.

16.
JACC Basic Transl Sci ; 3(1): 38-53, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30062193

RESUMO

Synthetic vascular grafts for small diameter revascularization are lacking. Clinically available conduits expanded polytetrafluorethylene and Dacron fail acutely due to thrombosis and in the longer term from neointimal hyperplasia. We report the bioengineering of a cell-free, silk-based vascular graft. In vitro we demonstrate strong, elastic silk conduits that support rapid endothelial cell attachment and spreading while simultaneously resisting blood clot and fibrin network formation. In vivo rat studies show complete graft patency at all time points, rapid endothelialization, and stabilization and contraction of neointimal hyperplasia. These studies show the potential of silk as an off-the-shelf small diameter vascular graft.

17.
Stem Cell Res Ther ; 9(1): 70, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29562916

RESUMO

BACKGROUND: Induced pluripotent stem-cell derived endothelial cells (iPSC-ECs) can be generated from any somatic cell and their iPSC sources possess unlimited self-renewal. Previous demonstration of their proangiogenic activity makes them a promising cell type for treatment of ischemic injury. As with many other stem cell approaches, the low rate of in-vivo survival has been a major limitation to the efficacy of iPSC-ECs to date. In this study, we aimed to increase the in-vivo lifetime of iPSC-ECs by culturing them on electrospun polycaprolactone (PCL)/gelatin scaffolds, before quantifying the subsequent impact on their proangiogenic function. METHODS: iPSC-ECs were isolated and stably transfected with a luciferase reporter to facilitate quantification of cell numbers and non-invasive imaging in-vivo PCL/gelatin scaffolds were engineered using electrospinning to obtain woven meshes of nanofibers. iPSC-ECs were cultured on scaffolds for 7 days. Subsequently, cell growth and function were assessed in vitro followed by implantation in a mouseback subcutaneous model for 7 days. RESULTS: Using a matrix of conditions, we found that scaffold blends with ratios of PCL:gelatin of 70:30 (PG73) spun at high flow rates supported the greatest levels of iPSC-EC growth, retention of phenotype, and function in vitro. Implanting iPSC-ECs seeded on PG73 scaffolds in vivo improved their survival up to 3 days, compared to cells directly injected into control wounds, which were no longer observable within 1 h. Enhanced engraftment improved blood perfusion, observed through non-invasive laser Doppler imaging. Immunohistochemistry revealed a corresponding increase in host angiogenic mechanisms characterized by the enhanced recruitment of macrophages and the elevated expression of proangiogenic cytokines vascular endothelial growth factor and placental growth factor. CONCLUSIONS: Knowledge of these mechanisms combined with a deeper understanding of the scaffold parameters influencing this function provides the groundwork for optimizing future iPSC-EC therapies utilizing engraftment platforms. The development of combined scaffold and iPSC-EC therapies could ultimately improve therapeutic angiogenesis and the treatment of ischemic injury.


Assuntos
Células Endoteliais/citologia , Regeneração Tecidual Guiada/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Diferenciação Celular , Células Endoteliais/efeitos dos fármacos , Gelatina/química , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Poliésteres/química , Alicerces Teciduais/efeitos adversos
18.
ACS Biomater Sci Eng ; 4(11): 3843-3847, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429591

RESUMO

ß3-peptides uniquely form shear thinning hydrogels which are proteolytically stable and biocompatible. Herein we describe the synthesis, material and optical characterization of a new class of fluorescently labeled hydrogelators based on a helical N-acetylated ß3-peptide backbone. The resulting hydrogels were analyzed using fluorescence microscopy to confirm successful incorporation of the fluorophore within the fiber matrix without compromising the ß3-peptide self-assembly. Serial, noninvasive conscious animal imaging was used to monitor the injected hydrogel, delivered via subcutaneous injection, while tracking their degradation patterns in real-time. The hydrogels demonstrated persistent, high-intensity fluorescence when monitored over a 14-day period.

19.
PLoS One ; 12(3): e0174773, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355300

RESUMO

Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.


Assuntos
Prótese Vascular , Artérias Carótidas/cirurgia , Modelos Animais de Doenças , Enxerto Vascular/métodos , Actinas/metabolismo , Animais , Rastreamento de Células/métodos , Colágeno/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperplasia , Medições Luminescentes/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Poliésteres/química , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Túnica Íntima/ultraestrutura , Grau de Desobstrução Vascular
20.
Acta Biomater ; 53: 378-388, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167301

RESUMO

Biomaterial scaffolds enhancing the engraftment of transplanted bone-marrow mononuclear cells (BM-MNC) have enormous potential for tissue regeneration applications. However, development of appropriate materials is challenging given the precise microenvironments required to support BM-MNC engraftment and function. In this study, we have developed a non-invasive, real-time tracking model of injected BM-MNC engraftment to wounds and implanted biomaterial scaffolds. BM-MNCs, encoded with firefly luciferase and enhanced GFP reporter genes, were tail vein injected into subcutaneously wounded mice. Luciferase-dependent cell bioluminescence curves revealed our injected BM-MNCs homed to and engrafted within subcutaneous wound sites over the course of 21days. Further immunohistochemical characterization showed that these engrafted cells drove functional changes by increasing the number of immune cells present at early time points and remodelling cell phenotypes at later time points. Using this model, we subcutaneously implanted electrospun polycaprolactone (PCL) and PCL/Collagen scaffolds, to determine differences in exogenous BM-MNC response to these materials. Following BM-MNC injection, immunohistochemical analysis revealed a high exogenous BM-MNC density around the periphery of PCL scaffolds consistent with a classical foreign body response. In contrast, transplanted BM-MNCs engrafted throughout PCL/Collagen scaffolds indicating an improved biological response. Importantly, these differences were closely correlated with the real-time bioluminescence curves, with PCL/Collagen scaffolds exhibiting a∼2-fold increase in maximum bioluminescence compared with PCL scaffolds. Collectively, these results demonstrate a new longitudinal cell tracking model that can non-invasively determine transplanted BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design scaffolds that help augment current BM-MNC tissue engineering strategies. STATEMENT OF SIGNIFICANCE: Tracking the dynamic behaviour of transplanted bone-marrow mononuclear cells (BM-MNCs) is a long-standing research goal. Conventional methods involving contrast and tracer agents interfere with cellular function while also yielding false signals. The use of bioluminescence addresses these shortcomings while allowing for real-time non-invasive tracking in vivo. Given the failures of transplanted BM-MNCs to engraft into injured tissue, biomaterial scaffolds capable of attracting and enhancing BM-MNC engraftment at sites of injury are highly sought in numerous tissue engineering applications. To this end, the results from this study demonstrate a new longitudinal tracking model that can non-invasively determine exogenous BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design of scaffolds with implications for countless tissue engineering applications.


Assuntos
Rastreamento de Células/métodos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/transplante , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência/métodos , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia , Animais , Células da Medula Óssea/citologia , Feminino , Injeções , Camundongos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...