Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27638854

RESUMO

INTRODUCTION: We aimed to examine the regulation of aquaporin 1 expression in an angiotensinogen transgenic mouse model, focusing on underlying mechanisms. METHODS: Male transgenic mice overexpressing rat angiotensinogen in their renal proximal tubular cells (RPTCs) and rat immortalised RPTCs stably transfected with rat angiotensinogen cDNA were used. RESULTS: Angiotensinogen-transgenic mice developed hypertension and nephropathy, changes that were either partially or completely attenuated by treatment with losartan or dual renin-angiotensin system blockade (losartan and perindopril), respectively, while hydralazine prevented hypertension but not nephropathy. Decreased expression of aquaporin 1 and heme oxygenase-1 and increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and sodium-hydrogen exchanger 3 were observed in RPTCs of angiotensinogen-transgenic mice and in angiotensinogen-transfected immortalised RPTCs. These parameters were normalised by dual renin-angiotensin system blockade. Both in vivo and in vitro studies identified a novel mechanism in which angiotensinogen overexpression in RPTCs enhances the cytosolic accumulation of Nrf2 via the phosphorylation of pGSK3ß Y216. Consequently, lower intranuclear Nrf2 levels are less efficient to trigger heme oxygenase-1 expression as a defence mechanism, which subsequently diminishes aquaporin 1 expression in RPTCs. CONCLUSIONS: Angiotensinogen-mediated downregulation of aquaporin 1 and Nrf2 signalling may play an important role in intrarenal renin-angiotensin system-induced hypertension and kidney injury.


Assuntos
Angiotensinogênio/metabolismo , Aquaporina 1/genética , Regulação para Baixo , Heme Oxigenase-1/metabolismo , Túbulos Renais Proximais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Animais , Aquaporina 1/metabolismo , Linhagem Celular , Proteínas da Matriz Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Imuno-Histoquímica , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Túbulos Renais Proximais/patologia , Camundongos Transgênicos , Modelos Biológicos , Fosforilação , Ratos , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , beta Catenina/metabolismo
2.
Biol Proced Online ; 4: 38-48, 2002 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-12734570

RESUMO

Recent evidence indicates novel role for matrix metalloproteinases (MMPs), in particular gelatinase A (MMP-2), in the regulation of vascular biology that are unrelated to their well-known proteolytic breakdown of matrix proteins. We have previously reported that MMP-2 can modulate vascular reactivity by cleavage of the Gly32-Leu33 bound in big endothelin-1 (ET-1) yielding a novel vasoactive peptide ET-1[1-32]. These studies were conducted to investigate whether gelatinolytic MMPs could affect neutrophil-endothelial cell attachment. ET-1[1-32] produced by MMP-2 up-regulated CD11b/CD18 expression on human neutrophils, thereby promoted their adhesion to cultured endothelial cells. ET-1[1-32] evoked release of gelatinase B (MMP-9), which in turn cleaved big ET-1 to yield ET-1[1-32], thus revealing a self-amplifying loop for ET-1[1-32] generation. ET-1[1-32] was rather resistant to cleavage by neutrophil proteases and further metabolism of ET-1[1-32] was not a prerequisite for its biological actions on neutrophils. The neutrophil responses to ET-1[1-32] were mediated via activation of ET(A)receptors through activation of the Ras/Raf-1/MEK/ERK signaling pathway. These results suggest a novel role for gelatinase A and B in the regulation of neutrophil functions and their interactions with endothelial cells. Here we describe the methods in detail as they relate to our previously published work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...