Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172485, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636869

RESUMO

Stormwater runoff is a pathway of entry for microplastics (MPs, plastics <5 mm) into aquatic ecosystems. The objectives of this study were to determine MP size, morphology, chemical composition, and loading across urban storm events. Particles were extracted from stormwater samples collected at outfall locations using wet peroxide oxidation and cellulose digestion followed by analysis via attenuated total reflectance (ATR) FTIR. Concentrations observed were 0.99 ± 1.10 MP/L for 500-1000 µm and 0.41 ± 0.30 MP/L for the 1000-5000 µm size ranges. Seventeen different polymer types were observed. MP particle sizes measured using a FTIR-microscope camera indicated non-target size particles based on sieve-size classification, highlighting a potential source of error in studies reporting concentration by size class. A maximum MP load of 38.3 MP/m2 of upstream catchment was calculated. MP loadings had moderate correlations with both rainfall accumulation and intensity (Kendall τ = 0.54 and 0.42, respectively, both p ≤ 0.005). First flush (i.e. rapid wash-off of pollutants from watershed surfaces during rainfall early stages) was not always observed, and antecedent dry days were not correlated with MP abundance, likely due to the short dry periods between sampling events. Overall, the results presented provide data for risk assessment and mitigation strategies.

2.
Anal Bioanal Chem ; 415(27): 6809-6823, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798472

RESUMO

Quantification and characterization of microplastics, synthetic polymers less than 5 mm in diameter, requires extraction methods that can reduce non-plastic debris without loss or alteration of the polymers. Nitric acid has been used to extract plastic particles from zooplankton and other biota because it completely digests tissue and exoskeletons, thus reducing interferences. While the impact of acid digestion protocols on several polymers has been demonstrated, advice for quantifying microplastic and interpreting their spectra following nitric acid digestion is lacking. Fourier transform infrared (FTIR) and/or Raman spectroscopy was performed on plastics from > 50 common consumer products (including a variety of textiles) pre- and post-nitric acid treatment. The percent match and assigned polymer were tabulated to compare the accuracy of spectral identification before and after nitric acid digestion via two open spectral analysis software. Nylon-66, polyoxymethylene, polyurethane, polyisoprene, nitrile rubber, and polymethyl methacrylate had ≥ 90% mass loss in nitric acid. Other less-impacted polymers changed color, morphology, and/or size following digestion. Thus, using nitric acid digestion for microplastic extraction can impact our understanding of the particle sizes and morphologies ingested in situ. Spectral analysis results were compiled to understand how often (1) the best-hit matches were correct (30-60% of spectra), (2) the best-hit matches exceeding the (arbitrary) threshold of 65% match were correct (53-78% of spectra), and (3) the best-hit matches for anthropogenic polymers were incorrectly identified as natural polymers (12-15% of spectra). Based on these results, advice is provided on how nitric acid digestion can impact microplastics as well as spectral interpretation.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Ácido Nítrico/análise , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Polímeros/análise , Digestão , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...