Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Protoc ; 4(2)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207547

RESUMO

Despite the public availability, finding experts in any field when relying on academic publications can be challenging, especially with the use of jargons. Even after overcoming these issues, the discernment of expertise by authorship positions is often also absent in the many publication-based search platforms. Given that it is common in many academic fields for the research group lead or lab head to take the position of the last author, some of the existing authorship scoring systems that assign a decreasing weightage from the first author would not reflect the last author correctly. To address these problems, we incorporated natural language processing (Common Crawl using fastText) to retrieve related keywords when using jargons as well as a modified authorship positional scoring that allows the assignment of greater weightage to the last author. The resulting output is a ranked scoring system of researchers upon every search that we implemented as a webserver for internal use called the APD lab Capability & Expertise Search (ACES).

2.
J Biomol Tech ; 32(1): 10-14, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34025220

RESUMO

Even with the ubiquity of Sanger sequencing, automated assembly software are predominantly stand-alone software packages for desktop/laptop use with very few online equivalents, thus geospatially constraining sequence analysis and assembly. With increased data output worldwide, there is also a need for automated quality checks and trimming prior to large assemblies, along with automated detection of mutations. Through web servers with expanded automation and functionalities, even smartphones/phablets can be used to perform complex analysis previously limited to desktops, especially if they can upload files from cloud storage. To facilitate such online accessible sequence assembly and analysis, we created Yet Another Quick Assembly, Analysis and Trimming Tool web server for the automated assembly of multiple .ab1 and .FASTQ sequencing reads de novo with automated trimming and scanning of the assembled sequences for single nucleotide polymorphisms and insertions or deletions without installation of software, allowing it to be accessed from anywhere with Internet access and with minimal dependency on other software and web tools.


Assuntos
Computadores , Software , Automação
3.
J Biomol Tech ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33584150

RESUMO

Even with the ubiquity of Sanger sequencing, automated assembly software are predominantly stand-alone software packages for desktop/laptop use with very few online equivalents, thus geospatially constraining sequence analysis and assembly. With increased data output worldwide, there is also a need for automated quality checks and trimming prior to large assemblies, along with automated detection of mutations. Through web servers with expanded automation and functionalities, even smartphones/phablets can be used to perform complex analysis previously limited to desktops, especially if they can upload files from cloud storage. To facilitate such online accessible sequence assembly and analysis, we created Yet Another Quick Assembly, Analysis and Trimming Tool web server for the automated assembly of multiple .ab1 and .FASTQ sequencing reads de novo with automated trimming and scanning of the assembled sequences for single nucleotide polymorphisms and insertions or deletions without installation of software, allowing it to be accessed from anywhere with Internet access and with minimal dependency on other software and web tools.

4.
Molecules ; 25(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322154

RESUMO

The ongoing development of drug resistance in HIV continues to push for the need of alternative drug targets in inhibiting HIV. One such target is the Reverse transcriptase (RT) enzyme which is unique and critical in the viral life cycle-a rational target that is likely to have less off-target effects in humans. Serendipitously, we found two chemical scaffolds from the National Cancer Institute (NCI) Diversity Set V that inhibited HIV-1 RT catalytic activity. Computational structural analyses and subsequent experimental testing demonstrated that one of the two chemical scaffolds binds to a novel location in the HIV-1 RT p51 subunit, interacting with residue Y183, which has no known association with previously reported drug resistance. This finding supports the possibility of a novel druggable site on p51 for a new class of non-nucleoside RT inhibitors that may inhibit HIV-1 RT allosterically. Although inhibitory activity was shown experimentally to only be in the micromolar range, the scaffolds serve as a proof-of-concept of targeting the HIV RT p51 subunit, with the possibility of medical chemistry methods being applied to improve inhibitory activity towards more effective drugs.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Sequência de Aminoácidos , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/enzimologia , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Terapia de Alvo Molecular , Ligação Proteica , Relação Estrutura-Atividade
5.
Biosystems ; 193-194: 104135, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32259562

RESUMO

Mutations underpin the processes in life, be it beneficial or detrimental. While mutations are assumed to be random in the bereft of selection pressures, the genetic code has underlying computable probabilities in amino acid phenotypic changes. With a wide range of implications including drug resistance, understanding amino acid changes is important. In this study, we calculated the probabilities of substitutions mutations in the genetic code leading to the 20 amino acids and stop codons. Our calculations reveal an enigmatic in-built self-preserving organization of the genetic code that averts disruptive changes at the physicochemical properties level. These changes include changes to start, aromatic, negative charged amino acids and stop codons. Our findings thus reveal a statistical mechanism governing the relationship between amino acids and the universal genetic code.


Assuntos
Aminoácidos/genética , Código Genético/genética , Polimorfismo de Nucleotídeo Único/genética , Probabilidade , Humanos
6.
Antib Ther ; 3(3): 221-226, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33928229

RESUMO

The use of augmented reality (AR) in providing three-dimensional (3D) visual support and image depth have been applied in education, tourism, historical studies, and medical training. In research and development, there has been a slow but growing use of AR tools in chemical and drug discovery, but little has been implemented for whole 3D antibody structures (IgE, IgM, IgA, IgG, and IgD) and in communicating their interactions with the antigens or receptors in publications. Given that antibody interactions can vary significantly between different monoclonal antibodies, a convenient and easy to use 3D visualization can convey structural mechanisms clearer to readers, especially in how residues may interact with one another. While this was previously constrained to the use of stereo images on printed material or molecular visualization software on the computer, the revolution of smartphone and phablets now allows visualization of whole molecular structures on-the-go, allowing rotations, zooming in and out, and even animations without complex devices or the training of visual prowess. While not yet as versatile as molecular visualization software on the computer, such technology is an improvement from stereo-images and bridges the gap with molecular visualization tools. In this report, we discuss the use of AR and how they can be employed in the holistic view of antibodies and the future of the technology for better scientific communication.

7.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30630879

RESUMO

The reductionist approach is prevalent in biomedical science. However, increasing evidence now shows that biological systems cannot be simply considered as the sum of its parts. With experimental, technological, and computational advances, we can now do more than view parts in isolation, thus we propose that an increasing holistic view (where a protein is investigated as much as a whole as possible) is now timely. To further advocate this, we review and discuss several studies and applications involving allostery, where distant protein regions can cross-talk to influence functionality. Therefore, we believe that an increasing big picture approach holds great promise, particularly in the areas of antibody engineering and drug discovery in rational drug design.


Assuntos
Formação de Anticorpos/genética , Descoberta de Drogas/tendências , Imunoglobulinas/genética , Engenharia de Proteínas/tendências , Regulação Alostérica/genética , Humanos , Imunoglobulinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...