Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS One ; 19(6): e0306006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905233

RESUMO

To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18-80 years, stratified by age decade and sex (median age 52, IQR 36-66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience.


Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Memória , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Adulto , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Idoso de 80 Anos ou mais , Adolescente , Envelhecimento/fisiologia , Adulto Jovem , Memória/fisiologia , Cognição/fisiologia , Estudos Transversais , Neuroimagem/métodos , Projetos de Pesquisa , Coleta de Dados
3.
Sci Rep ; 14(1): 4699, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409583

RESUMO

Deregulation of lipid composition in adipose tissue adjacent to breast tumour is observed in ex vivo and animal models. Novel non-invasive magnetic resonance imaging (MRI) allows rapid lipid mapping of the human whole breast. We set out to elucidate the spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive (ER +) breast cancer. Thirteen participants (mean age, 62 ± [SD] 6 years) with ER + breast cancer and 13 age-matched postmenopausal healthy controls were scanned on MRI. The number of double bonds in triglycerides was computed from MRI images to derive lipid composition maps of monounsaturated, polyunsaturated, and saturated fatty acids (MUFA, PUFA, SFA). The spatial heterogeneity measures (mean, median, skewness, entropy and kurtosis) of lipid composition in the peri-tumoural region and the whole breast of participants and in the whole breast of controls were computed. The Ki-67 proliferative activity marker and CD163 antibody on tumour-associated macrophages were assessed histologically. Mann Whitney U or Wilcoxon tests and Spearman's coefficients were used to assess group differences and correlations, respectively. For comparison against the whole breast in participants, peri-tumoural MUFA had a lower mean (median (IQR), 0.40 (0.02), p < .001), lower median (0.42 (0.02), p < .001), a negative skewness with lower magnitude (- 1.65 (0.77), p = .001), higher entropy (4.35 (0.64), p = .007) and lower kurtosis (5.13 (3.99), p = .001). Peri-tumoural PUFA had a lower mean (p < .001), lower median (p < .001), a positive skewness with higher magnitude (p = .005) and lower entropy (p = .002). Peri-tumoural SFA had a higher mean (p < .001), higher median (p < .001), a positive skewness with lower magnitude (p < .001) and lower entropy (p = .012). For comparison against the whole breast in controls, peri-tumoural MUFA had a negative skewness with lower magnitude (p = .01) and lower kurtosis (p = .009), however there was no difference in PUFA or SFA. CD163 moderately correlated with peri-tumoural MUFA skewness (rs = - .64), PUFA entropy (rs = .63) and SFA skewness (rs = .59). There was a lower MUFA and PUFA while a higher SFA, and a higher heterogeneity of MUFA while a lower heterogeneity of PUFA and SFA, in the peri-tumoural region in comparison with the whole breast tissue. The degree of lipid deregulation was associated with inflammation as indicated by CD163 antibody on macrophages, serving as potential marker for early diagnosis and response to therapy.


Assuntos
Neoplasias da Mama , Animais , Humanos , Pessoa de Meia-Idade , Feminino , Neoplasias da Mama/diagnóstico por imagem , Ácidos Graxos Monoinsaturados , Pós-Menopausa , Ácidos Graxos , Receptores de Estrogênio
4.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247051

RESUMO

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Consenso , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cabeça , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mapeamento Encefálico/métodos
5.
J Neuroimaging ; 34(1): 61-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37925602

RESUMO

BACKGROUND AND PURPOSE: Magnetic resonance imaging (MRI) measures of tissue microstructure are important for monitoring brain white matter (WM) disorders like leukodystrophies and multiple sclerosis. They should be sensitive to underlying pathological changes. Three whole-brain isotropic quantitative methods were applied and compared within a cohort of controls and leukodystrophy patients: two novel myelin water imaging (MWI) techniques (multi-compartment relaxometry diffusion-informed MWI: MCR-DIMWI, and multi-echo T2 relaxation imaging with compressed sensing: METRICS) and neurite orientation dispersion and density imaging (NODDI). METHODS: For 9 patients with different leukodystrophies (age range 0.4-62.4 years) and 15 control subjects (2.3-61.3 years), T1-weighted MRI, fluid-attenuated inversion recovery, multi-echo gradient echo with variable flip angles, METRICS, and multi-shell diffusion-weighted imaging were acquired on 3 Tesla. MCR-DIMWI, METRICS, NODDI, and quality control measures were extracted to evaluate differences between patients and controls in WM and deep gray matter (GM) regions of interest (ROIs). Pearson correlations, effect size calculations, and multi-level analyses were performed. RESULTS: MCR-DIMWI and METRICS-derived myelin water fractions (MWFs) were lower and relaxation times were higher in patients than in controls. Effect sizes of MWF values and relaxation times were large for both techniques. Differences between patients and controls were more pronounced in WM ROIs than in deep GM. MCR-DIMWI-MWFs were more homogeneous within ROIs and more bilaterally symmetrical than METRICS-MWFs. The neurite density index was more sensitive in detecting differences between patients and controls than fractional anisotropy. Most measures obtained from MCR-DIMWI, METRICS, NODDI, and diffusion tensor imaging correlated strongly with each other. CONCLUSION: This proof-of-concept study shows that MCR-DIMWI, METRICS, and NODDI are sensitive techniques to detect changes in tissue microstructure in WM disorders.


Assuntos
Doenças Desmielinizantes , Leucoencefalopatias , Substância Branca , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Doenças Desmielinizantes/patologia , Leucoencefalopatias/patologia , Água , Espectroscopia de Ressonância Magnética , Neuritos
6.
ArXiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461418

RESUMO

This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting.

7.
Neuroimage ; 266: 119824, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539169

RESUMO

In this study, we optimized the variable flip angle (VFA) acquisition scheme using numerical simulations to shorten the acquisition time of multicompartment relaxometry for myelin water imaging (MCR-MWI) to a clinically practical range in the absence of advanced image reconstruction methods. As the primary objective of this study, the test-retest repeatability of myelin water fraction (MWF) measurements of MCR-MWI is evaluated on three gradient echo (GRE) sequence settings using the optimized VFA schemes with different echo times and repetition times, emulating various scanner setups. The cross-protocol reproducibility of MCR-MWI and MCR with diffusion-informed myelin water imaging (MCR-DIMWI) is also examined. As a secondary objective, we explore the bundle-specific profiles of various microstructural parameters from MCR-(DI)MWI and their cross-correlations to determine if these parameters possess supplementary microstructure information beyond myelin concentration. Numerical simulations indicate that MCR-MWI can be performed with a minimum of three flip angles covering a wide range of T1 weightings without adding significant bias. This is supported by the results of an in vivo experiment, allowing whole-brain 1.5 mm isotropic MWF maps to be acquired in 9 min, reducing the total scan time to 40% of the original implementation without significant quality degradation. Good test-retest repeatability is observed for MCR-MWI for all three GRE protocols. While good correlations can also be found in MWF across protocols, systematic differences are observed. Bundle-specific MWF analysis reveals that certain white matter bundles are similar in all participants. We also found that microstructure relaxation parameters have low linear correlations with MWF. MCR-MWI is a reproducible measure of myelin. However, attention should be paid to the protocol related MWF differences when comparing different studies, as the MWF bias up to 0.5% can be observed across the protocols examined in this work.


Assuntos
Bainha de Mielina , Água , Humanos , Bainha de Mielina/metabolismo , Água/análise , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
8.
Magn Reson Med ; 88(1): 380-390, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344591

RESUMO

PURPOSE: Ex vivo imaging is a commonly used approach to investigate the biophysical mechanism of orientation-dependent signal phase evolution in white matter. Yet, how phase measurements are influenced by the structural alteration in the tissue after formalin fixation is not fully understood. Here, we study the effects on magnetic susceptibility, microstructural compartmentalization, and chemical exchange measurement with a postmortem formalin-fixed whole-brain human tissue. METHODS: A formalin-fixed, postmortem human brain specimen was scanned with multiple orientations to the main magnetic field direction for robust bulk magnetic susceptibility measurement with conventional quantitative susceptibility imaging models. White matter samples were subsequently excised from the whole-brain specimen and scanned in multiple rotations on an MRI scanner to measure the anisotropic magnetic susceptibility and microstructure-related contributions in the signal phase and to validate the findings of the whole-brain data. RESULTS: The bulk isotropic magnetic susceptibility of ex vivo whole-brain imaging is comparable to in vivo imaging, with noticeable enhanced nonsusceptibility contributions. The excised specimen experiment reveals that anisotropic magnetic susceptibility and compartmentalization phase effect were considerably reduced in the formalin-fixed white matter specimens. CONCLUSIONS: Formalin-fixed postmortem white matter exhibits comparable isotropic magnetic susceptibility to previous in vivo imaging findings. However, the measured phase and magnitude data of the fixed white matter tissue shows a significantly weaker orientation dependency and compartmentalization effect. Alternatives to formalin fixation are needed to better reproduce the in vivo microstructural effects in postmortem samples.


Assuntos
Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Formaldeído , Humanos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
9.
BMC Cancer ; 22(1): 285, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300617

RESUMO

BACKGROUND: Response guided treatment in breast cancer is highly desirable, but the effectiveness is only established based on residual cellularity from histopathological analysis after surgery. Tubule formation, a key component of grading score, is directly associated with cellularity, with significant implications on prognosis. Peri-tumoural lipid composition, a potential marker, can be rapidly mapped across the entire breast using novel method of chemical shift-encoded imaging, enabling the quantification of spatial distribution. We hypothesise that peri-tumoural spatial distribution of lipid composition is sensitive to tumour cellular differentiation and proliferative activity. METHODS: Twenty whole tumour specimens freshly excised from patients with invasive ductal carcinoma (9 Score 2 and 11 Score 3 in tubule formation) were scanned on a 3 T clinical scanner (Achieva TX, Philips Healthcare). Quantitative lipid composition maps were acquired for polyunsaturated, monounsaturated, and saturated fatty acids (PUFA, MUFA, SFA). The peri-tumoural spatial distribution (mean, skewness, entropy and kurtosis) of each lipid constituent were then computed. The proliferative activity marker Ki-67 and tumour-infiltrating lymphocytes (TILs) were assessed histologically. RESULTS: For MUFA, there were significant differences between groups in mean (p = 0.0119), skewness (p = 0.0116), entropy (p = 0.0223), kurtosis (p = 0.0381), and correlations against Ki-67 in mean (ρ = -0.5414), skewness (ρ = 0.6045) and entropy (ρ = 0.6677), and TILs in mean (ρ = -0.4621). For SFA, there were significant differences between groups in mean (p = 0.0329) and skewness (p = 0.0111), and correlation against Ki-67 in mean (ρ = 0.5910). For PUFA, there was no significant difference in mean, skewness, entropy or kurtosis between the groups. CONCLUSIONS: There was an association between peri-tumoural spatial distribution of lipid composition with tumour cellular differentiation and proliferation. Peri-tumoural lipid composition imaging might have potential in non-invasive quantitative assessment of patients with breast cancer for treatment planning and monitoring.


Assuntos
Neoplasias da Mama/metabolismo , Mama/patologia , Ácidos Graxos/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Estudos Transversais , Entropia , Feminino , Humanos , Antígeno Ki-67/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade
10.
J Cereb Blood Flow Metab ; 41(12): 3391-3399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34415209

RESUMO

Recent studies suggest that a subset of cortical microinfarcts may be identifiable on T2* but invisible on T1 and T2 follow-up images. We aimed to investigate whether cortical microinfarcts are associated with iron accumulation after the acute stage. The RUN DMC - InTENse study is a serial MRI study including individuals with cerebral small vessel disease (SVD). 54 Participants underwent 10 monthly 3 T MRIs, including diffusion-weighted imaging, quantitative R1 (=1/T1), R2 (=1/T2), and R2* (=1/T2*) mapping, from which MRI parameters within areas corresponding to microinfarcts and control region of interests (ROIs) were retrieved within 16 participants. Finally, we compared pre- and post-lesional values with repeated measures ANOVA and post-hoc paired t-tests using the mean difference between lesion and control ROI values. We observed 21 acute cortical microinfarcts in 7 of the 54 participants (median age 69 years [IQR 66-74], 63% male). R2* maps demonstrated an increase in R2* values at the moment of the last available follow-up MRI (median [IQR], 5 [5-14] weeks after infarction) relative to prelesional values (p = .08), indicative of iron accumulation. Our data suggest that cortical microinfarcts are associated with increased R2* values, indicative of iron accumulation, possibly due to microhemorrhages, neuroinflammation or neurodegeneration, awaiting histopathological verification.


Assuntos
Córtex Cerebral , Infarto Cerebral , Doenças de Pequenos Vasos Cerebrais , Imagem de Difusão por Ressonância Magnética , Ferro/metabolismo , Idoso , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/metabolismo , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/metabolismo , Feminino , Humanos , Masculino
11.
Neuroimage ; 237: 118138, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964461

RESUMO

Multi-echo gradient echo (ME-GRE) magnetic resonance signal evolution in white matter has a strong dependence on the orientation of myelinated axons with respect to the main static field. Although analytical solutions have been able to predict some of the white matter (WM) signal behaviour of the hollow cylinder model, it has been shown that realistic models of WM offer a better description of the signal behaviour observed. In this work, we present a pipeline to (i) generate realistic 2D WM models with their microstructure based on real axon morphology with adjustable fiber volume fraction (FVF) and g-ratio. We (ii) simulate their interaction with the static magnetic field to be able to simulate their MR signal. For the first time, we (iii) demonstrate that realistic 2D WM models can be used to simulate a MR signal that provides a good approximation of the signal obtained from a real 3D WM model derived from electron microscopy. We then (iv) demonstrate in silico that 2D WM models can be used to predict microstructural parameters in a robust way if ME-GRE multi-orientation data is available and the main fiber orientation in each pixel is known using DTI. A deep learning network was trained and characterized in its ability to recover the desired microstructural parameters such as FVF, g-ratio, free and bound water transverse relaxation and magnetic susceptibility. Finally, the network was trained to recover these micro-structural parameters from an ex vivo dataset acquired in 9 orientations with respect to the magnetic field and 12 echo times. We demonstrate that this is an overdetermined problem and that as few as 3 orientations can already provide comparable results for some of the decoded metrics.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Idoso de 80 Anos ou mais , Autopsia , Simulação por Computador , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Microscopia Eletrônica
12.
Magn Reson Med ; 86(1): 526-542, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638241

RESUMO

PURPOSE: To create a realistic in silico head phantom for the second QSM reconstruction challenge and for future evaluations of processing algorithms for QSM. METHODS: We created a digital whole-head tissue property phantom by segmenting and postprocessing high-resolution (0.64 mm isotropic), multiparametric MRI data acquired at 7 T from a healthy volunteer. We simulated the steady-state magnetization at 7 T using a Bloch simulator and mimicked a Cartesian sampling scheme through Fourier-based processing. Computer code for generating the phantom and performing the MR simulation was designed to facilitate flexible modifications of the phantom in the future, such as the inclusion of pathologies as well as the simulation of a wide range of acquisition protocols. Specifically, the following parameters and effects were implemented: TR and TE, voxel size, background fields, and RF phase biases. Diffusion-weighted imaging phantom data are provided, allowing future investigations of tissue-microstructure effects in phase and QSM algorithms. RESULTS: The brain part of the phantom featured realistic morphology with spatial variations in relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the phantom's properties, including the possibility of generating phase data with nonlinear evolution over TE due to partial-volume effects or complex distributions of frequency shifts within the voxel. CONCLUSION: The presented phantom and computer programs are publicly available and may serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility reconstruction algorithms.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
13.
Neuroimage ; 232: 117897, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33621694

RESUMO

Myelin water imaging techniques based on multi-compartment relaxometry have been developed as an important tool to measure myelin concentration in vivo, but are limited by the long scan time of multi-contrast multi-echo acquisition. In this work, a fast imaging technique, termed variable flip angle Echo Planar Time-Resolved Imaging (vFA-EPTI), is developed to acquire multi-echo and multi-flip-angle gradient-echo data with significantly reduced acquisition time, providing rich information for multi-compartment analysis of gradient-echo myelin water imaging (GRE-MWI). The proposed vFA-EPTI method achieved 26 folds acceleration with good accuracy by utilizing an efficient continuous readout, optimized spatiotemporal encoding across echoes and flip angles, as well as a joint subspace reconstruction. An approach to estimate off-resonance field changes between different flip-angle acquisitions was also developed to ensure high-quality joint reconstruction across flip angles. The accuracy of myelin water fraction (MWF) estimate under high acceleration was first validated by a retrospective undersampling experiment using a lengthy fully-sampled data as reference. Prospective experiments were then performed where whole-brain MWF and multi-compartment quantitative maps were obtained in 5 min at 1.5 mm isotropic resolution and 24 min at 1 mm isotropic resolution at 3T. Additionally, ultra-high resolution data at 600 µm isotropic resolution were acquired at 7T, which show detailed structures within the cortex such as the line of Gennari, demonstrating the ability of the proposed method for submillimeter GRE-MWI that can be used to study cortical myeloarchitecture in vivo.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Humanos , Estudos Retrospectivos , Água/metabolismo
14.
Neuroimage ; 227: 117611, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309901

RESUMO

Quantitative susceptibility mapping (QSM) is a physics-driven computational technique that has a high sensitivity in quantifying iron deposition based on MRI phase images. Furthermore, it has a unique ability to distinguish paramagnetic and diamagnetic contributions such as haemorrhage and calcification based on image contrast. These properties have contributed to a growing interest to use QSM not only in research but also in clinical applications. However, it is challenging to obtain high quality susceptibility map because of its ill-posed nature, especially for researchers who have less experience with QSM and the optimisation of its pipeline. In this paper, we present an open-source processing pipeline tool called SuscEptibility mapping PIpeline tool for phAse images (SEPIA) dedicated to the post-processing of MRI phase images and QSM. SEPIA connects various QSM toolboxes freely available in the field to offer greater flexibility in QSM processing. It also provides an interactive graphical user interface to construct and execute a QSM processing pipeline, simplifying the workflow in QSM research. The extendable design of SEPIA also allows developers to deploy their methods in the framework, providing a platform for developers and researchers to share and utilise the state-of-the-art methods in QSM.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Algoritmos , Mapeamento Encefálico/métodos , Humanos , Software
15.
Neuroimage ; 221: 117159, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663644

RESUMO

Myelin water fraction (MWF) mapping based on data fitting of a 3-pool exponential model of multi-echo gradient echo (mGRE) data using MRI shows great promises for in vivo myelin quantification. However, this multi-exponential fitting is ill-conditioned because of the similar relaxation times and frequency shifts of the various compartments. Additionally, the bound water residing in the myelin sheath of white matter is expected to have a faster longitudinal magnetisation recovery than that of the free water in the intra-axonal and extra-axonal space. When the Ernst angle is used to achieve maximum SNR and improve fitting, this will introduce a T1-weighting effect to the derived MWF. In this study, we first demonstrate that diffusion-weighted imaging can be used to infer the compartmental signal properties using an analytical fibre model to achieve a robust MWF estimation. Second, we show that by incorporating a variable flip angle scheme to the mGRE acquisition with a multi-compartment relaxometry model, not only the MWF is corrected from the T1 dependency but also the fitting procedure becomes less ill-conditioned and more SNR efficient. Finally, we demonstrate these two approaches can be combined to allow higher spatial resolution MWF maps than what has been reported to date with robust MWF estimation on a small cohort.


Assuntos
Água Corporal/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Teóricos , Bainha de Mielina , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Adulto Jovem
16.
Hum Brain Mapp ; 39(11): 4440-4451, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30030945

RESUMO

Structure tensor informed fibre tractography (STIFT) based on informing tractography for diffusion-weighted images at 3T and by utilising the structure tensor obtained from gradient-recalled echo (GRE) images at 7T is able to delineate fibres when seed voxels are placed close to the fibre boundaries. However, incorporating data from two different field strengths limits the applicability of STIFT. In this study, STIFT was implemented with both diffusion-weighted images and GRE images acquired at 3T. Instead of using the magnitude GRE data directly for STIFT as in the previous work, the utility of T2 * maps and quantitative susceptibility maps derived from complex-valued GRE data to improve fibre delineation was explored. Single-seed tractography was performed and the results show that the optic radiation reconstructed with STIFT is more distinguishable from the inferior longitudinal fasciculus/inferior fronto-occipital fasciculus complex when compared to standard diffusion-weighted imaging tractography. We further investigated the quantitative effects of STIFT in a group of five healthy volunteers and evaluated its impact on measures of structural connectivity. The framework was extended to evaluate implementations of STIFT based on T2 *-weighted and quantitative susceptibility-weighted images in a whole-brain connectivity study. In terms of connectivity, no systematic differences were found between STIFT and diffusion-weighted imaging tractography, suggesting that local improvements in tractography are not translated to the atlas-based structural connectivity analysis. Nevertheless, the reduction in the number of statistically significant connections in the STIFT connectivity matrix suggests that STIFT can potentially reduce the false-positive connections in fibre tractography.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Algoritmos , Estudos de Coortes , Humanos , Vias Neurais/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...