Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
2.
CNS Neurosci Ther ; 30(2): e14393, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37563872

RESUMO

RATIONALE: Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), share a distinct pathological feature, that is, a widespread accumulation of α-synuclein (α-syn) in the brain. There is a significant clinical unmet need for disease-modifying treatments for synucleinopathies. Recently, a seaweed-derived mixture of oligosaccharides sodium oligomannate, GV-971, was approved for Phase 2 clinical trials for PD. This study aimed to further evaluate the therapeutic effects of GV-971 on synucleinopathies using cellular and animal models and explore its associated molecular mechanisms. METHODS: α-Syn aggregation was assessed, in vitro and ex vivo, by ThT assay. A dopaminergic neuron cell line, Prnp-SNCAA53T mice, and brain slices from PD and DLB patients were used to determine the efficacy of GV-971 in ameliorating α-syn pathology. Measurements of motor functions, including pole, cylinder, and rotarod tests, were conducted on Prnp-SNCAA53T mice 4 weeks after intragastric administration of GV-971 (200 mg day-1 kg-1 ). RESULTS: GV-971 effectively prevented α-syn aggregation and even disassembled pre-aggregated α-syn fibrils, in vitro and ex vivo. In addition, GV-971 was able to rescue α-syn-induced neuronal damage and reduced release of extracellular vesicles (EVs), likely via modulating Alix expression. In the Prnp-SNCAA53T mouse model, when treated at the age of 5 months, GV-971 significantly decreased α-syn deposition in the cortex, midbrain, and cerebellum regions, along with ameliorating the motor dysfunctions. CONCLUSIONS: Our results indicate that GV-971, when administered at a relatively early stage of the disease process, significantly reduced α-syn accumulation and aggregation in Prnp-SNCAA53T mice. Furthermore, GV-971 corrected α-syn-induced inhibition of EVs release in neurons, contributing to neuronal protection. Future studies are needed to further assess GV-971 as a promising disease-modifying therapy for PD and other synucleinopathies.


Assuntos
Manose , Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Lactente , Camundongos , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Manose/análogos & derivados , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
3.
Muscle Nerve ; 67(4): 306-310, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747323

RESUMO

INTRODUCTION/AIMS: There are currently no imaging or blood diagnostic biomarkers that can differentiate amyotrophic lateral sclerosis (ALS) from primary lateral sclerosis (PLS) patients early in their disease courses. Our objective is to examine whether patients with PLS can be differentiated from ALS reliably by using plasma lipidome profile and supervised machine learning. METHODS: 40 ALS and 28 PLS patients derived from the Multicenter Cohort study of Oxidative Stress (COSMOS) and 28 healthy control volunteers (CTR) were included. ALS, PLS, and CTR were matched by age and sex. Plasma samples were obtained after overnight fasting. Lipids were extracted from the plasma samples and analyzed using liquid chromatography/mass spectrometry to obtain relative concentrations of 392 lipid species. The lipid data were partitioned into training and testing datasets randomly. An elastic net algorithm was trained using cross-validation to classify PLS vs ALS and PLS vs CTR. Final accuracy was evaluated in the testing dataset. RESULTS: The elastic net model trained with labeled PLS and ALS training lipid dataset demonstrated accuracy (number classified correctly/total number), sensitivity, and specificity of 100% in classifying PLS vs ALS in the unlabeled testing lipid dataset. Similarly, the elastic net model trained with labeled PLS and CTR training lipid datasets demonstrated accuracy, sensitivity, and specificity of 88% in classifying PLS vs CTR in the unlabeled testing lipid dataset. DISCUSSION: Our study suggests PLS patients can be accurately distinguished from ALS and CTR by combining lipidome profile and supervised machine learning without clinical information.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Lipidômica , Estudos de Coortes , Aprendizado de Máquina , Lipídeos
4.
Commun Biol ; 6(1): 210, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823305

RESUMO

The late endosome/lysosome (LE/Lys) lipid bis(monoacylglycero)phosphate (BMP) plays major roles in cargo sorting and degradation, regulation of cholesterol and intercellular communication and has been linked to viral infection and neurodegeneration. Although BMP was initially described over fifty years ago, the enzymes regulating its synthesis remain unknown. The first step in the BMP biosynthetic pathway is the conversion of phosphatidylglycerol (PG) into lysophosphatidylglycerol (LPG) by a phospholipase A2 (PLA2) enzyme. Here we report that this enzyme is lysosomal PLA2 (LPLA2). We show that LPLA2 is sufficient to convert PG into LPG in vitro. We show that modulating LPLA2 levels regulates BMP levels in HeLa cells, and affects downstream pathways such as LE/Lys morphology and cholesterol levels. Finally, we show that in a model of Niemann-Pick disease type C, overexpressing LPLA2 alleviates the LE/Lys cholesterol accumulation phenotype. Altogether, we shed new light on BMP biosynthesis and contribute tools to regulate BMP-dependent pathways.


Assuntos
Endossomos , Lisossomos , Humanos , Células HeLa , Fosfolipases A2/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Colesterol/metabolismo
5.
Front Med (Lausanne) ; 9: 955785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465917

RESUMO

Background: Effective multicomponent interventions in the community targeted at preventing frailty in at-risk older adults can promote healthy ageing. However, there is a lack of studies exploring the effectiveness of technology-enabled autonomous multi-domain community-based interventions for frailty. We developed a novel end-to-end System for Assessment and Intervention of Frailty (SAIF) with exercise, nutrition, and polypharmacy components. This pilot study aimed to explore SAIF's effectiveness in improving frailty status, physical performance and strength, and its usability in pre-frail older adults. Materials and methods: This is a single arm 8-week pilot study in 20 community-dwelling older adults who were pre-frail, defined using the Clinical Frailty Scale (CFS) as CFS 3 + (CFS 3 and FRAIL positive) or CFS 4. For outcomes, we assessed frailty status using the modified Fried Frailty Phenotype (FFP) and CFS; physical performance using Short Physical Performance Battery (SPPB); and Hand Grip Strength (HGS) at baseline and 8-week. User experience was explored using the System Usability Scale (SUS), interest-enjoyment subscale of the Intrinsic Motivation Inventory and open-ended questions. We analyzed effectiveness using repeated-measures tests on pre-post scores, and usability using a convergent mixed-method approach via thematic analysis of open-ended responses and descriptive statistics of usability/interest-enjoyment scales. Results: Sixteen participants (71.8 ± 5.5 years) completed the 8-week study. There was a significant improvement in FFP score (-0.5, p < 0.05, effect size, r = 0.43), but not CFS (-1.0, p = 0.10, r = 0.29). Five (31.3%) improved in frailty status for both FFP and CFS. SPPB (+1.0, p < 0.05, r = 0.42) and HGS (+3.5, p < 0.05, r = 0.45) showed significant improvements. Three themes were identified: "Difficulty in module navigation" (barriers for SAIF interaction); "User engagement by gamification" (facilitators that encourage participation); and "Perceived benefits to physical health" (subjective improvements in physical well-being), which corroborated with SUS (68/100) and interest-enjoyment (3.9/5.0) scores. Taken together, user experience results cohere with the Senior Technology Acceptance and Adoption Model. Conclusion: Our pilot study provides preliminary evidence of the effectiveness of SAIF in improving frailty status, physical performance and strength of pre-frail older adults, and offers user experience insights to plan the follow-up large-scale randomized controlled trial.

6.
Transl Psychiatry ; 12(1): 129, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351864

RESUMO

Apolipoprotein E ε4 (APOE4) is the primary genetic risk factor for the late-onset form of Alzheimer's disease (AD). Although the reason for this association is not completely understood, researchers have uncovered numerous effects of APOE4 expression on AD-relevant brain processes, including amyloid beta (Aß) accumulation, lipid metabolism, endosomal-lysosomal trafficking, and bioenergetics. In this study, we aimed to determine the effect of APOE4 allelic dosage on regional brain lipid composition in aged mice, as well as in cultured neurons. We performed a targeted lipidomic analysis on an AD-vulnerable brain region (entorhinal cortex; EC) and an AD-resistant brain region (primary visual cortex; PVC) from 14-15 month-old APOE3/3, APOE3/4, and APOE4/4 targeted replacement mice, as well as on neurons cultured with conditioned media from APOE3/3 or APOE4/4 astrocytes. Our results reveal that the EC possesses increased susceptibility to APOE4-associated lipid alterations compared to the PVC. In the EC, APOE4 expression showed a dominant effect in decreasing diacylglycerol (DAG) levels, and a semi-dominant, additive effect in the upregulation of multiple ceramide, glycosylated sphingolipid, and bis(monoacylglycerol)phosphate (BMP) species, lipids known to accumulate as a result of endosomal-lysosomal dysfunction. Neurons treated with conditioned media from APOE4/4 vs. APOE3/3 astrocytes showed similar alterations of DAG and BMP species to those observed in the mouse EC. Our results suggest that APOE4 expression differentially modulates regional neuronal lipid signatures, which may underlie the increased susceptibility of EC-localized neurons to AD pathology.


Assuntos
Peptídeos beta-Amiloides , Apolipoproteína E4 , Córtex Entorrinal , Dosagem de Genes , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Córtex Entorrinal/metabolismo , Lipidômica , Camundongos
7.
J Neuroinflammation ; 19(1): 53, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193594

RESUMO

BACKGROUND: Immune system dysfunction, including higher levels of peripheral monocytes and inflammatory cytokines, is an important feature of Parkinson's disease (PD) pathogenesis, although the mechanism underlying the process remains to be investigated. In the central nervous system, it is well-known that α-synuclein (α-syn), a key protein involved in PD, activates microglia potently, and it is also reported that α-syn exists in the peripheral system, especially in erythrocytes or red blood cells (RBC) at exceedingly high concentration. The current study focused on the possibility that RBC-derived α-syn mediates the sensitization of peripheral monocytes in PD patients. METHODS: The hyperactivation of monocytes was assessed quantitatively by measuring mRNA levels of typical inflammatory cytokines (including IL-1ß, IL-6 and TNF-α) and protein levels of secreted inflammatory cytokines (including pro-inflammatory cytokines: IL-1ß, IL-6, TNF-α, IL-8, IFN-γ, IL-2, and IL-12p70 and anti-inflammatory cytokines: IL-4, IL-10, and IL-13). Western blot, nanoparticle tracking analysis and electron microscopy were used to characterize RBC-derived extracellular vesicles (RBC-EVs). Inhibitors of endocytosis and leucine-rich repeat kinase 2 (LRRK2), another key protein involved in PD, were used to investigate how these two factors mediated the process of monocyte sensitization by RBC-EVs. RESULTS: Increased inflammatory sensitization of monocytes was observed in PD patients and PD model mice. We found that α-syn-containing RBC-EVs isolated from PD model mice or free form oligomeric α-syn induced the inflammatory sensitization of THP-1 cells, and demonstrated that endocytosis was a requirement for this pathophysiological pathway. Furthermore, the hyperactivation of THP-1 cells induced by RBC-EVs was associated with increased LRRK2 production and kinase activity. The phenomenon of inflammatory sensitization of human monocytes and increased LRRK2 were also observed by the treatment of RBC-EVs isolated from PD patients. CONCLUSIONS: Our data provided new insight into how hyperactivation of monocytes occurs in PD patients, and identified the central role played by α-syn-containing RBC-EVs in this process.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Animais , Eritrócitos/metabolismo , Eritrócitos/patologia , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , Monócitos/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
9.
J Child Psychol Psychiatry ; 63(7): 802-809, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34541665

RESUMO

BACKGROUND: Women are 1.5-3 times more likely to suffer from depression than men. This sex bias first emerges during puberty and then persists across the reproductive years. As the cause remains largely elusive, we performed a methylation-wide association study (MWAS) to generate novel hypotheses. METHODS: We assayed nearly all 28 million possible methylation sites in blood in 595 blood samples from 487 participants aged 9-17. MWASs were performed to identify methylation sites associated with increasing sex differences in depression symptoms as a function of pubertal stage. Epigenetic deconvolution was applied to perform analyses on a cell-type specific level. RESULTS: In monocytes, a substantial number of significant associations were detected after controlling the FDR at 0.05. These results could not be explained by plasma testosterone/estradiol or current/lifetime trauma. Our top results in monocytes were significantly enriched (ratio of 2.48) for genes in the top of a large genome-wide association study (GWAS) meta-analysis of depression and neurodevelopment-related Gene Ontology (GO) terms that remained significant after correcting for multiple testing. Focusing on our most robust findings (70 genes overlapping with the GWAS meta-analysis and the significant GO terms), we find genes coding for members of each of the major classes of axon guidance molecules (netrins, slits, semaphorins, ephrins, and cell adhesion molecules). Many of these genes were previously implicated in rodent studies of brain development and depression-like phenotypes, as well as human methylation, gene expression and GWAS studies. CONCLUSIONS: Our study suggests that the emergence of sex differences in depression may be related to the differential rewiring of brain circuits between boys and girls during puberty.


Assuntos
Estudo de Associação Genômica Ampla , Caracteres Sexuais , Encéfalo , Metilação de DNA , Depressão/genética , Feminino , Humanos , Masculino , Puberdade
10.
Glia ; 70(2): 337-353, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713920

RESUMO

The integrity of blood-brain-barrier (BBB) is essential for normal brain functions, synaptic remodeling, and angiogenesis. BBB disruption is a common pathology during Parkinson's disease (PD), and has been hypothesized to contribute to the progression of PD. However, the molecular mechanism of BBB disruption in PD needs further investigation. Here, A53T PD mouse and a 3-cell type in vitro BBB model were used to study the roles of α-synuclein (α-syn) in BBB disruption with the key results confirmed in the brains of PD patients obtained at autopsy. The A53T PD mouse studies showed that the expression of tight junction-related proteins decreased, along with increased vascular permeability and accumulation of oligomeric α-syn in activated astrocytes in the brain. The in vitro BBB model studies demonstrated that treatment with oligomeric α-syn, but not monomeric or fibrillar α-syn, resulted in significant disruption of BBB integrity. This process involved the expression and release of vascular endothelial growth factor A (VEGFA) and nitric oxide (NO) from oligomeric α-syn treated astrocytes. Increased levels of VEGFA and iNOS were also observed in the brain of PD patients. Blocking the VEGFA signaling pathway in the in vitro BBB model effectively protected the barrier against the harmful effects of oligomeric α-syn. Finally, the protective effects on BBB integrity associated with inhibition of VEGFA signaling pathway was also confirmed in PD mice. Taken together, our study concluded that oligomeric α-syn is critically involved in PD-associated BBB disruption, in a process that is mediated by astrocyte-derived VEGFA.


Assuntos
Doença de Parkinson , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Humanos , Camundongos , Doença de Parkinson/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , alfa-Sinucleína/metabolismo
11.
Addict Biol ; 27(2): e13114, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34791764

RESUMO

Using an integrative, multi-tissue design, we sought to characterize methylation and hydroxymethylation changes in blood and brain associated with alcohol use disorder (AUD). First, we used epigenomic deconvolution to perform cell-type-specific methylome-wide association studies within subpopulations of granulocytes/T-cells/B-cells/monocytes in 1132 blood samples. Blood findings were then examined for overlap with AUD-related associations with methylation and hydroxymethylation in 50 human post-mortem brain samples. Follow-up analyses investigated if overlapping findings mediated AUD-associated transcription changes in the same brain samples. Lastly, we replicated our blood findings in an independent sample of 412 individuals and aimed to replicate published alcohol methylation findings using our results. Cell-type-specific analyses in blood identified methylome-wide significant associations in monocytes and T-cells. The monocyte findings were significantly enriched for AUD-related methylation and hydroxymethylation in brain. Hydroxymethylation in specific sites mediated AUD-associated transcription in the same brain samples. As part of the most comprehensive methylation study of AUD to date, this work involved the first cell-type-specific methylation study of AUD conducted in blood, identifying and replicating a finding in DLGAP1 that may be a blood-based biomarker of AUD. In this first study to consider the role of hydroxymethylation in AUD, we found evidence for a novel mechanism for cognitive deficits associated with AUD. Our results suggest promising new avenues for AUD research.


Assuntos
Alcoolismo , Consumo de Bebidas Alcoólicas , Alcoolismo/genética , Encéfalo , Metilação de DNA , Epigenoma , Humanos
12.
J Am Acad Child Adolesc Psychiatry ; 60(12): 1524-1532, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33631312

RESUMO

OBJECTIVE: The impact of adolescent cannabis use is a pressing public health question owing to the high rates of use and links to negative outcomes. This study considered the association between problematic adolescent cannabis use and methylation. METHOD: Using an enrichment-based sequencing approach, a methylome-wide association study (MWAS) was performed of problematic adolescent cannabis use in 703 adolescent samples from the Great Smoky Mountain Study. Using epigenomic deconvolution, MWASs were performed for the main cell types in blood: granulocytes, T cells, B cells, and monocytes. Enrichment testing was conducted to establish overlap between cannabis-associated methylation differences and variants associated with negative mental health effects of adolescent cannabis use. RESULTS: Whole-blood analyses identified 45 significant CpGs, and cell type-specific analyses yielded 32 additional CpGs not identified in the whole-blood MWAS. Significant overlap was observed between the B-cell MWAS and genetic studies of education attainment and intelligence. Furthermore, the results from both T cells and monocytes overlapped with findings from an MWAS of psychosis conducted in brain tissue. CONCLUSION: In one of the first methylome-wide association studies of adolescent cannabis use, several methylation sites located in genes of importance for potentially relevant brain functions were identified. These findings resulted in several testable hypotheses by which cannabis-associated methylation can impact neurological development and inflammation response as well as potential mechanisms linking cannabis-associated methylation to potential downstream mental health effects.


Assuntos
Cannabis , Transtornos Psicóticos , Adolescente , Metilação de DNA , Estudo de Associação Genômica Ampla , Humanos , Saúde Mental
14.
Epigenetics ; 15(11): 1163-1166, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32425094

RESUMO

Recent years have seen a surge of methylome-wide association studies (MWAS). We observed that many of these studies suffer from test statistic inflation that is most likely caused by commonly used quality control (QC) pipelines not going far enough to remove technical artefacts. To support this claim, we reanalysed GEO datasets with an improved QC pipeline that reduced test-statistic inflation parameter lambda from the original mean/median of 20.16/15.17 to 3.07/1.14. Furthermore, the mean/median number of methylome-wide significant findings was reduced by 65,688/57,805 loci after more thorough QC. To avoid such false positives we argue for more extensive QC and that reporting the test-statistic inflation parameter lambda become standard for all MWAS allowing readers to better assess the risk of false discoveries.


Assuntos
Epigenoma , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Epigenômica/normas , Estudo de Associação Genômica Ampla/normas , Humanos , Reprodutibilidade dos Testes
15.
Cell Rep ; 30(12): 4197-4208.e6, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209478

RESUMO

Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.


Assuntos
Deleção de Genes , Hipocampo/enzimologia , Hipocampo/fisiologia , Fosfolipase D/metabolismo , Animais , Dendritos/metabolismo , Lipidômica , Depressão Sináptica de Longo Prazo , Camundongos Knockout , Teste de Campo Aberto , Ácidos Fosfatídicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Social , Proteína 25 Associada a Sinaptossoma/metabolismo , Análise e Desempenho de Tarefas
16.
Artigo em Inglês | MEDLINE | ID: mdl-31917335

RESUMO

STARD4, a member of the evolutionarily conserved START gene family, is a soluble sterol transport protein implicated in cholesterol sensing and maintenance of cellular homeostasis. STARD4 is widely expressed and has been shown to transfer sterol between liposomes as well as organelles in cells. However, STARD4 knockout mice lack an obvious phenotype, so the overall role of STARD4 is unclear. To model long term depletion of STARD4 in cells, we use short hairpin RNA technology to stably decrease STARD4 expression in human U2OS osteosarcoma cells (STARD4-KD). We show that STARD4-KD cells display increased total cholesterol, slower cholesterol trafficking between the plasma membrane and the endocytic recycling compartment, and increased plasma membrane fluidity. These effects can all be rescued by transient expression of a short hairpin RNA-resistant STARD4 construct. Some of the cholesterol increase was due to excess storage in late endosomes or lysosomes. To understand the effects of reduced STARD4, we carried out transcriptional and lipidomic profiling of control and STARD4-KD cells. Reduction of STARD4 activates compensatory mechanisms that alter membrane composition and lipid homeostasis. Based on these observations, we propose that STARD4 functions as a critical sterol transport protein involved in sterol sensing and maintaining lipid homeostasis.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose , Humanos , Lipidômica , Proteínas de Membrana Transportadoras/genética , Interferência de RNA , RNA Interferente Pequeno/genética
17.
Biol Psychiatry ; 87(5): 431-442, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31889537

RESUMO

BACKGROUND: We sought to characterize methylation changes in brain and blood associated with major depressive disorder (MDD). As analyses of bulk tissue may obscure association signals and hamper the biological interpretation of findings, these changes were studied on a cell type-specific level. METHODS: In 3 collections of human postmortem brain (n = 206) and 1 collection of blood samples (N = 1132) of MDD cases and controls, we used epigenomic deconvolution to perform cell type-specific methylome-wide association studies within subpopulations of neurons/glia for the brain data and granulocytes/T cells/B cells/monocytes for the blood data. Sorted neurons/glia from a fourth postmortem brain collection (n = 58) were used for validation purposes. RESULTS: Cell type-specific methylome-wide association studies identified multiple findings in neurons/glia that were detected across brain collections and were reproducible in physically sorted nuclei. Cell type-specific analyses in blood samples identified methylome-wide significant associations in T cells, monocytes, and whole blood that replicated findings from a past methylation study of MDD. Pathway analyses implicated p75 neurotrophin receptor/nerve growth factor signaling and innate immune toll-like receptor signaling in MDD. Top results in neurons, glia, bulk brain, T cells, monocytes, and whole blood were enriched for genes supported by genome-wide association studies for MDD and other psychiatric disorders. CONCLUSIONS: We both replicated and identified novel MDD-methylation associations in human brain and blood samples at a cell type-specific level. Our results provide mechanistic insights into how the immune system may interact with the brain to affect MDD susceptibility. Importantly, our findings involved associations with MDD in human samples that implicated many closely related biological pathways. These disease-linked sites and pathways represent promising new therapeutic targets for MDD.


Assuntos
Transtorno Depressivo Maior , Metilação de DNA , Transtorno Depressivo Maior/genética , Epigenoma , Estudo de Associação Genômica Ampla , Humanos , Imunidade Inata , Fatores de Crescimento Neural
18.
Schizophr Bull ; 46(2): 319-327, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31165892

RESUMO

Methylome-wide association studies (MWASs) are promising complements to sequence variation studies. We used existing sequencing-based methylation data, which assayed the majority of all 28 million CpGs in the human genome, to perform an MWAS for schizophrenia in blood, while controlling for cell-type heterogeneity with a recently generated platform-specific reference panel. Next, we compared the MWAS results with findings from 3 existing large-scale array-based schizophrenia methylation studies in blood that assayed up to ~450 000 CpGs. Our MWAS identified 22 highly significant loci (P < 5 × 10-8) and 852 suggestively significant loci (P < 1 × 10-5). The top finding (P = 5.62 × 10-11, q = 0.001) was located in MFN2, which encodes mitofusin-2 that regulates Ca2+ transfer from the endoplasmic reticulum to mitochondria in cooperation with DISC1. The second-most significant site (P = 1.38 × 10-9, q = 0.013) was located in ALDH1A2, which encodes an enzyme for astrocyte-derived retinoic acid-a key neuronal morphogen with relevance for schizophrenia. Although the most significant MWAS findings were not assayed on the arrays, we observed significant enrichment of overlapping findings with 2 of the 3 array datasets (P = 0.0315, 0.0045, 0.1946). Overrepresentation analysis of Gene Ontology terms for the genes in the significant overlaps suggested high similarity in the biological functions detected by the different datasets. Top terms were related to immune and/or stress responses, cell adhesion and motility, and a broad range of processes essential for neurodevelopment.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Humanos
19.
Mol Psychiatry ; 25(6): 1344-1354, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30242228

RESUMO

We present the first large-scale methylome-wide association studies (MWAS) for major depressive disorder (MDD) to identify sites of potential importance for MDD etiology. Using a sequencing-based approach that provides near-complete coverage of all 28 million common CpGs in the human genome, we assay methylation in MDD cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from Brodmann Area 10, BA10). The MWAS for blood identified several loci with P ranging from 1.91 × 10-8 to 4.39 × 10-8 and a resampling approach showed that the cumulative association was significant (P = 4.03 × 10-10) with the signal coming from the top 25,000 MWAS markers. Furthermore, a permutation-based analysis showed significant overlap (P = 5.4 × 10-3) between the MWAS findings in blood and brain (BA10). This overlap was significantly enriched for a number of features including being in eQTLs in blood and the frontal cortex, CpG islands and shores, and exons. The overlapping sites were also enriched for active chromatin states in brain including genic enhancers and active transcription start sites. Furthermore, three loci located in GABBR2, RUFY3, and in an intergenic region on chromosome 2 replicated with the same direction of effect in the second brain tissue (BA25, N = 60) from the same individuals and in two independent brain collections (BA10, N = 81 and 64). GABBR2 inhibits neuronal activity through G protein-coupled second-messenger systems and RUFY3 is implicated in the establishment of neuronal polarity and axon elongation. In conclusion, we identified and replicated methylated loci associated with MDD that are involved in biological functions of likely importance to MDD etiology.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Transtorno Depressivo Maior/sangue , Epigenoma , Cromossomos Humanos Par 2/genética , Ilhas de CpG/genética , Proteínas do Citoesqueleto/genética , Metilação de DNA/genética , DNA Intergênico/genética , Transtorno Depressivo Maior/genética , Epigenoma/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de GABA-B/genética
20.
Mol Psychiatry ; 25(6): 1334-1343, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31501512

RESUMO

Recurrent and chronic major depressive disorder (MDD) accounts for a substantial part of the disease burden because this course is most prevalent and typically requires long-term treatment. We associated blood DNA methylation profiles from 581 MDD patients at baseline with MDD status 6 years later. A resampling approach showed a highly significant association between methylation profiles in blood at baseline and future disease status (P = 2.0 × 10-16). Top MWAS results were enriched specific pathways, overlapped with genes found in GWAS of MDD disease status, autoimmune disease and inflammation, and co-localized with eQTLS and (genic enhancers of) of transcription sites in brain and blood. Many of these findings remained significant after correction for multiple testing. The major themes emerging were cellular responses to stress and signaling mechanisms linked to immune cell migration and inflammation. This suggests that an immune signature of treatment-resistant depression is already present at baseline. We also created a methylation risk score (MRS) to predict MDD status 6 years later. The AUC of our MRS was 0.724 and higher than risk scores created using a set of five putative MDD biomarkers, genome-wide SNP data, and 27 clinical, demographic and lifestyle variables. Although further studies are needed to examine the generalizability to different patient populations, these results suggest that methylation profiles in blood may present a promising avenue to support clinical decision making by providing empirical information about the likelihood MDD is chronic or will recur in the future.


Assuntos
Metilação de DNA , Depressão , Transtorno Depressivo Maior , Suscetibilidade a Doenças , Encéfalo/metabolismo , Doença Crônica , Ilhas de CpG/genética , Metilação de DNA/genética , Depressão/sangue , Depressão/genética , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...