Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 7: 827, 2014 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417012

RESUMO

BACKGROUND: The giant panda (Ailuropoda melanoleuca) is an endangered species well-known for ingesting bamboo as a major part of their diet despite the fact that it belongs to order Carnivora. However, the giant panda's draft genome shows no direct evidence of enzymatic genes responsible for cellulose digestion. To explore this phenomenon, we study the giant panda's gut microbiota using genomic approaches in order to better understand their physiological processes as well as any potential microbial cellulose digestion processes. RESULTS: A complete genome of isolated Klebsiella oxytoca HKOPL1 of 5.9 Mb has been successfully sequenced, closed and comprehensively annotated against various databases. Genome comparisons within the Klebsiella genus and K. oxytoca species have also been performed. A total of 5,772 genes were predicted, and among them, 211 potential virulence genes, 35 pathogenicity island-like regions, 1,615 potential horizontal transferring genes, 23 potential antibiotics resistant genes, a potential prophage integrated region, 8 genes in 2,3-Butanediol production pathway and 3 genes in the cellulose degradation pathway could be identified and discussed based on the comparative genomic studies between the complete genome sequence of K. oxytoca HKOPL1 and other Klebsiella strains. A functional study shows that K. oxytoca HKOPL1 can degrade cellulose within 72 hours. Phylogenomic studies indicate that K. oxytoca HKOPL1 is clustered with K. oxytoca strains 1686 and E718. CONCLUSIONS: K. oxytoca HKOPL1 is a gram-negative bacterium able to degrade cellulose. We report here the first complete genome sequence of K. oxytoca isolated from giant panda feces. These studies have provided further insight into the role of gut microbiota in giant panda digestive physiology. In addition, K. oxytoca HKOPL1 has the potential for biofuel application in terms of cellulose degradation and potential for the production of 2,3-Butanediol (an important industrial raw material).


Assuntos
Fezes/microbiologia , Genoma Bacteriano , Klebsiella oxytoca/genética , Animais , Farmacorresistência Bacteriana/genética , Sequências Repetitivas Dispersas , Klebsiella oxytoca/classificação , Klebsiella oxytoca/patogenicidade , Filogenia , Ursidae , Virulência/genética
2.
Emerg Microbes Infect ; 3(10): e69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26038496

RESUMO

Melioidosis, caused by Burkholderia pseudomallei, is an emerging infectious disease with an expanding geographical distribution. Although assessment of the environmental load of B. pseudomallei is important for risk assessment in humans or animals in endemic areas, traditional methods of bacterial culture for isolation have low sensitivities and are labor-intensive. Using a specific polymerase chain reaction (PCR) assay targeting a Tat domain protein in comparison with a bacterial culture method, we examined the prevalence of B. pseudomallei in soil samples from an oceanarium in Hong Kong where captive marine mammals and birds have contracted melioidosis. Among 1420 soil samples collected from various sites in the oceanarium over a 15-month period, B. pseudomallei was detected in nine (0.6%) soil samples using bacterial culture, whereas it was detected in 96 (6.8%) soil samples using the specific PCR assay confirmed by sequencing. The PCR-positive samples were detected during various months, with higher detection rates observed during summer months. Positive PCR detection was significantly correlated with ambient temperature (P<0.0001) and relative humidity (P=0.011) but not with daily rainfall (P=0.241) or a recent typhoon (P=0.787). PCR-positive samples were obtained from all sampling locations, with the highest detection rate in the valley. Our results suggest that B. pseudomallei is prevalent and endemic in the oceanarium. The present PCR assay is more sensitive than the bacterial culture method, and it may be used to help better assess the transmission of melioidosis and to design infection control measures for captive animals in this unique and understudied environment.

3.
J Clin Microbiol ; 49(3): 814-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177905

RESUMO

Burkholderia pseudomallei, Burkholderia thailandensis, and the Burkholderia cepacia complex differ greatly in pathogenicity and epidemiology. Yet, they are occasionally misidentified by biochemical profiling, and even 16S rRNA gene sequencing may not offer adequate discrimination between certain species groups. Using the 23 B. pseudomallei, four B. thailandensis, and 16 B. cepacia complex genome sequences available, we identified gene targets specific to each of them (a Tat domain protein, a 70-kDa protein, and a 12-kDa protein for B. pseudomallei, B. thailandensis, and the B. cepacia complex, respectively), with an in-house developed algorithm. Using these targets, we designed a robust multiplex PCR assay useful for their identification and detection from soil and simulated sputum samples. For all 43 B. pseudomallei, seven B. thailandensis, and 20 B. cepacia complex (B. multivorans, n = 6; B. cenocepacia, n = 3; B. cepacia, n = 4; B. arboris, n = 2; B. contaminans, B. anthina, and B. pyrrocinia, n = 1 each; other unnamed members, n = 2) isolates, the assay produced specific products of predicted size without false positives or negatives. Of the 60 soil samples screened, 19 (31.6%) and 29 (48.3%) were positive for B. pseudomallei and the B. cepacia complex, respectively, and in four (6.7%) soil samples, the organisms were codetected. DNA sequencing confirmed that all PCR products originated from their targeted loci. This novel pan-genomic analysis approach in target selection is simple, computationally efficient, and potentially applicable to any species that harbors species-specific genes. A multiplex PCR assay for rapid and accurate identification and detection of B. pseudomallei, B. thailandensis, and the B. cepacia complex was developed and verified.


Assuntos
Técnicas Bacteriológicas/métodos , Burkholderia/classificação , Burkholderia/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Burkholderia/genética , Infecções por Burkholderia/diagnóstico , Infecções por Burkholderia/microbiologia , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Microbiologia Ambiental , Humanos , Dados de Sequência Molecular , Sensibilidade e Especificidade , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...