Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1999): 20230529, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37221845

RESUMO

Deforestation is a major contributor to biodiversity loss, yet the impact of forest loss on daily microclimate variability and its implications for species with different daily activity patterns remain poorly understood. Using a recently developed microclimate model, we investigated the effects of deforestation on the daily temperature range (DTR) in low-elevation tropical regions and high-elevation temperate regions. Our results show that deforestation substantially increases DTR in these areas, suggesting a potential impact on species interactions. To test this hypothesis, we studied the competitive interactions between nocturnal burying beetles and all-day-active blowfly maggots in forested and deforested habitats in Taiwan. We show that deforestation leads to increased DTR at higher elevations, which enhances the competitiveness of blowfly maggots during the day and leads to a higher failure rate of carcass burial by the beetles at night. Thus, deforestation-induced temperature variability not only modulates exploitative competition between species with different daily activity patterns, but also likely exacerbates the negative impacts of climate change on nocturnal organisms. In order to limit potential adverse effects on species interactions and their ecological functions, our study highlights the need to protect forests, especially in areas where deforestation can greatly alter temperature variability.


Assuntos
Biodiversidade , Besouros , Animais , Temperatura , Mudança Climática , Febre , Larva
2.
Elife ; 92020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32807299

RESUMO

Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species' optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change.


Insects, reptiles and many other animals are often referred to as being 'cold-blooded' because, unlike mammals and birds, their body temperature fluctuates with the temperature of their surrounding environment. As a result, many cold-blooded animals are very sensitive to changes in local climate. Environmental factors, such as temperature and precipitation, as well biotic factors, such as two species competing for food or the presence of a predator, may influence how well an animal performs at different temperatures. However, few studies have examined how both environmental and biotic factors affect the range of temperatures in which a cold-blooded animal is able to survive and reproduce. When Asian burying beetles reproduce, they lay their eggs around buried animal carcasses that can provide food for their offspring. Previous studies have found that individual burying beetles can cooperate with each other to defend themselves against their main competitor, blowflies, which also lay their eggs on animal carcasses. Here, Tsai et al. used mathematical and experimental approaches to study how blowflies affect the range of temperatures in which burying beetles are able to live under different environmental conditions. The experiments showed that when blowflies were present, the range of temperatures that burying beetles were able to survive and reproduce in was smaller. Furthermore, the optimal temperature for the burying beetles to live in shifted back, away from that of their competitor. Larger groups of burying beetles were able to survive and reproduce in a greater range of temperatures than smaller groups, even when blowflies were present. This suggests that increasing the amount bury beetles cooperate with each other may make them more resilient to changes in temperature. The Earth is currently experiencing a period of climate change and therefore it is important to understand how different species of animals may respond to to changing temperatures. These findings reinforce the idea that even a small change in temperature may lead to changes in how different species interact with each other, which in turn influences the ecosystem in which they live.


Assuntos
Comportamento Animal/fisiologia , Mudança Climática , Besouros/fisiologia , Temperatura , Animais , Calliphoridae/fisiologia , Comportamento Competitivo , Ecologia , Ecossistema , Feminino , Masculino , Reprodução
3.
Ecol Lett ; 22(10): 1668-1679, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347240

RESUMO

How abiotic and biotic factors constrain distribution limits at the harsh and benign edges of species ranges is hotly debated, partly because macroecological experiments testing the proximate causes of distribution limits are scarce. It has long been recognized - at least since Darwin's On the Origin of Species - that a harsh climate strengthens competition and thus sets species range limits. Using thorough field manipulations along a large elevation gradient, we show the mechanisms by which temperature determines competition type, resulting in a transition from interference to exploitative competition from the lower to the upper elevation limits in burying beetles (Nicrophorus nepalensis). This transition is an example of Darwin's classic hypothesis that benign climates favor direct competition for highly accessible resources while harsh climates result in competition through resources of high rivalry. We propose that identifying the properties of these key resources will provide a more predictive framework to understand the interplay between biotic and abiotic factors in determining geographic range limits.


Assuntos
Altitude , Clima , Besouros , Animais , Cruzamento , China , Comportamento Competitivo , Modelos Estatísticos , Densidade Demográfica , Temperatura
4.
Elife ; 3: e02440, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24842999

RESUMO

The ability to form cooperative societies may explain why humans and social insects have come to dominate the earth. Here we examine the ecological consequences of cooperation by quantifying the fitness of cooperative (large groups) and non-cooperative (small groups) phenotypes in burying beetles (Nicrophorus nepalensis) along an elevational and temperature gradient. We experimentally created large and small groups along the gradient and manipulated interspecific competition with flies by heating carcasses. We show that cooperative groups performed as thermal generalists with similarly high breeding success at all temperatures and elevations, whereas non-cooperative groups performed as thermal specialists with higher breeding success only at intermediate temperatures and elevations. Studying the ecological consequences of cooperation may not only help us to understand why so many species of social insects have conquered the earth, but also to determine how climate change will affect the success of these and other social species, including our own.DOI: http://dx.doi.org/10.7554/eLife.02440.001.


Assuntos
Besouros/metabolismo , Besouros/fisiologia , Comportamento Social , Animais , Mudança Climática , Comportamento Competitivo , Comportamento Cooperativo , Meio Ambiente , Modelos Lineares , Análise Multivariada , Reprodução , Taiwan , Temperatura
5.
Nat Commun ; 3: 885, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22673912

RESUMO

Identifying the factors that modulate cooperative and competitive behaviours is the key to understanding social evolution. However, how ecological factors affect social conflict and their fitness consequences remain relatively unexplored. Here, using both a game-theoretical model and empirical data, we show that Taiwan yuhinas (Yuhina brunneiceps)--a joint-nesting species in which group members are unrelated--employ more cooperative strategies in unfavourable environmental conditions. Fighting duration was lower, fewer total eggs were laid and incubation was more likely to start after all females completed egg laying (which causes more synchronous egg hatching). Surprisingly, as a consequence, there were more surviving offspring in unfavourable conditions because the cooperative strategies resulted in fewer dead nestlings. To our knowledge, this study is the first theoretical analysis and empirical study demonstrating that an unfavourable environment reduces social conflict and results in better fitness consequences in social vertebrates.


Assuntos
Comportamento Animal/fisiologia , Passeriformes/fisiologia , Animais , Feminino , Masculino , Comportamento de Nidação/fisiologia , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...