Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dermatol Sci ; 104(2): 83-94, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34690024

RESUMO

BACKGROUND: Urban pollution is correlated with an increased prevalence of skin pigmentation disorders, however the physiological processes underlying this association are unclear. OBJECTIVES: To delineate the relationship between polycyclic aromatic hydrocarbons (PAHs), a key constituent of atmospheric pollution, and immunity/skin pigmentation pathways. METHODS: We exposed peripheral blood mononuclear cells (PBMC) to PAHs and performed cytokines/chemokine profiling. We then examined the effect of immune activation on pigmentation by co-culturing PBMC and Benzo(a)pyrene (BaP) with reconstructed human pigmented epidermis (RHPE). To study the mechanism, we treated keratinocytes with conditioned medium from BaP-exposed PBMC and studied DNA damage responses, aryl hydrocarbon receptor (AhR) activation and pro-pigmentation factor, proopiomelanocortin (POMC) secretion. RESULTS: PAHs induced up-regulation of inflammatory cytokines/chemokine in PBMC. Co-culturing of RHPE with PBMC+BaP resulted in increased melanin content and localization. BaP-conditioned medium significantly increased DNA damage, p53 stabilization, AhR activation and POMC secretion in keratinocytes. We found that IFNγ induced DNA damage, while TNFα and IL-8 potentiated POMC secretion in keratinocytes. Importantly, BaP-conditioned medium-induced DNA damage and POMC secretion is prevented by antioxidants vitamin E, vitamin C and sulforaphane, as well as the prototypical corticosteroid dexamethasone. Finally, vitamin C and sulforaphane enhanced the genome protective and depigmentation effects of dexamethasone, providing proof-of-concept for a combinatorial approach for the prevention and/or correction of PAH-induced pigment spots formation. CONCLUSION: Our study reveals the importance of systemic immunity in regulating PAH-induced skin pigmentation, and provide a new keratinocyte DNA damage response mechanistic target for the prevention or reversal of pollution-associated skin pigmentation.


Assuntos
Antioxidantes/farmacologia , Citocinas/metabolismo , Reparo do DNA , Hidrocarbonetos Policíclicos Aromáticos/imunologia , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/imunologia , Anti-Inflamatórios/farmacologia , Ácido Ascórbico/farmacologia , Benzo(a)pireno/farmacologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Dano ao DNA/efeitos dos fármacos , Dexametasona/farmacologia , Epiderme , Humanos , Fenômenos do Sistema Imunitário , Interferon gama/metabolismo , Interleucina-8/metabolismo , Isotiocianatos/farmacologia , Queratinócitos , Leucócitos Mononucleares , Melaninas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Pró-Opiomelanocortina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sulfóxidos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Vitamina E/farmacologia
2.
Cell Rep ; 26(6): 1668-1678.e4, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726746

RESUMO

Cell survival is a critical and ubiquitous endpoint in biology. The broadly accepted colony formation assay (CFA) directly measures a cell's ability to divide; however, it takes weeks to perform and is incompatible with high-throughput screening (HTS) technologies. Here, we describe the MicroColonyChip, which exploits microwell array technology to create an array of colonies. Unlike the CFA, where visible colonies are counted by eye, using fluorescence microscopy, microcolonies can be analyzed in days rather than weeks. Using automated analysis of microcolony size distributions, the MicroColonyChip achieves comparable sensitivity to the CFA (and greater sensitivity than the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide [XTT] assay). Compared to CellTiter-Glo, the MicroColonyChip is as sensitive and also robust to artifacts caused by differences in initial cell seeding density. We demonstrate efficacy via studies of radiosensitivity and chemosensitivity and show that the approach is amenable to multiplexing. We conclude that the MicroColonyChip is a rapid and automated alternative for cell survival quantitation.


Assuntos
Aflatoxina B1/toxicidade , Antineoplásicos Alquilantes/farmacologia , Bioensaio/instrumentação , Carmustina/farmacologia , Raios gama/efeitos adversos , Procedimentos Analíticos em Microchip , Contagem de Células , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Células HeLa , Células Hep G2 , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Linfócitos/efeitos da radiação
3.
Front Immunol ; 9: 891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867926

RESUMO

Trauma is a leading cause of death worldwide with 5.8 million deaths occurring yearly. Almost 40% of trauma deaths are due to bleeding and occur in the first few hours after injury. Of the remaining severely injured patients up to 25% develop a dysregulated immune response leading to multiple organ dysfunction syndrome (MODS). Despite improvements in trauma care, the morbidity and mortality of this condition remains very high. Massive traumatic injury can overwhelm endogenous homeostatic mechanisms even with prompt treatment. The underlying mechanisms driving MODS are also not fully elucidated. As a result, successful therapies for trauma-related MODS are lacking. Trauma causes tissue damage that releases a large number of endogenous damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs released in trauma, such as mitochondrial DNA (mtDNA), could help to explain part of the immune response in trauma given the structural similarities between mitochondria and bacteria. MtDNA, like bacterial DNA, contains an abundance of highly stimulatory unmethylated CpG DNA motifs that signal through toll-like receptor-9 to produce inflammation. MtDNA has been shown to be highly damaging when injected into healthy animals causing acute organ injury to develop. Elevated circulating levels of mtDNA have been reported in trauma patients but an association with clinically meaningful outcomes has not been established in a large cohort. We aimed to determine whether mtDNA released after clinical trauma hemorrhage is sufficient for the development of MODS. Secondly, we aimed to determine the extent of mtDNA release with varying degrees of tissue injury and hemorrhagic shock in a clinically relevant rodent model. Our final aim was to determine whether neutralizing mtDNA with the nucleic acid scavenging polymer, hexadimethrine bromide (HDMBr), at a clinically relevant time point in vivo would reduce the severity of organ injury in this model. CONCLUSIONS: We have shown that the release of mtDNA is sufficient for the development of multiple organ injury. MtDNA concentrations likely peak at different points in the early postinjury phase dependent on the degree of isolated trauma vs combined trauma and hemorrhagic shock. HDMBr scavenging of circulating mtDNA (and nuclear DNA, nDNA) is associated with rescue from severe multiple organ injury in the animal model. This suggests that HDMBr could have utility in rescue from human trauma-induced MODS.


Assuntos
DNA Bacteriano/imunologia , DNA Mitocondrial/imunologia , Brometo de Hexadimetrina/uso terapêutico , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Traumatismo Múltiplo/tratamento farmacológico , Choque Hemorrágico/tratamento farmacológico , Adulto , Idoso , Alarminas/imunologia , Alarminas/metabolismo , Animais , Estudos de Coortes , DNA Bacteriano/sangue , DNA Mitocondrial/sangue , Modelos Animais de Doenças , Feminino , Brometo de Hexadimetrina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/mortalidade , Insuficiência de Múltiplos Órgãos/patologia , Traumatismo Múltiplo/imunologia , Traumatismo Múltiplo/mortalidade , Traumatismo Múltiplo/patologia , Estudos Prospectivos , Ratos Wistar , Choque Hemorrágico/imunologia , Choque Hemorrágico/mortalidade , Choque Hemorrágico/patologia , Índices de Gravidade do Trauma , Resultado do Tratamento , Adulto Jovem
4.
Free Radic Biol Med ; 110: 332-344, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28684161

RESUMO

Inflammation and oxidative stress contribute to emphysema in COPD. Although corticosteroids are the standard of care for COPD, they do not reduce oxidative stress, and a subset of patients is steroid-resistant. Vitamin E isoform γ-tocotrienol possesses both anti-inflammatory and anti-oxidative properties that may protect against emphysema. We aimed to establish the therapeutic potential of γ-tocotrienol in cigarette smoke-induced COPD models in comparison with prednisolone. BALB/c mice were exposed to cigarette smoke for 2 weeks or 2 months. γ-Tocotrienol and prednisolone were given orally. Bronchoalveolar lavage (BAL) fluid and lung tissues were assessed for inflammation, oxidative damage, and regulation of transcription factor activities. Emphysema and lung function were also evaluated. γ-Tocotrienol dose-dependently reduced cigarette smoke-induced BAL fluid neutrophil counts and levels of cytokines, chemokines and oxidative damage biomarkers, and pulmonary pro-inflammatory and pro-oxidant gene expression, but restored lung endogenous antioxidant activities. γ-Tocotrienol acted by inhibiting nuclear translocation of STAT3 and NF-κB, and up-regulating Nrf2 activation in the lungs. In mice exposed to 2-month cigarette smoke, γ-tocotrienol ameliorated bronchial epithelium thickening and destruction of alveolar sacs in lungs, and improved lung functions. In comparison with prednisolone, γ-tocotrienol demonstrated better anti-oxidative efficacy, and protection against emphysema and lung function in COPD. We revealed for the first time the anti-inflammatory and antioxidant efficacies of γ-tocotrienol in cigarette smoke-induced COPD models. In addition, γ-tocotrienol was able to attenuate emphysematous lesions and improve lung function in COPD. γ-Tocotrienol may have therapeutic potential for the treatment of COPD.


Assuntos
Anti-Inflamatórios/farmacologia , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/prevenção & controle , Espécies Reativas de Oxigênio/antagonistas & inibidores , Fumaça/efeitos adversos , Tocotrienóis/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Prednisolona/farmacologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
5.
J Immunol ; 199(1): 39-47, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526682

RESUMO

Exposure to environmental allergens is a major risk factor for asthma development. Allergens possess proteolytic activity that is capable of disrupting the airway epithelium. Although there is increasing evidence pointing to asthma as an epithelial disease, the underlying mechanism that drives asthma has not been fully elucidated. In this study, we investigated the direct DNA damage potential of aeroallergens on human bronchial epithelial cells and elucidated the mechanisms mediating the damage. Human bronchial epithelial cells, BEAS-2B, directly exposed to house dust mites (HDM) resulted in enhanced DNA damage, as measured by the CometChip and the staining of DNA double-strand break marker, γH2AX. HDM stimulated cellular reactive oxygen species production, increased mitochondrial oxidative stress, and promoted nitrosative stress. Notably, expression of nuclear factor erythroid 2-related factor 2-dependent antioxidant genes was reduced immediately after HDM exposure, suggesting that HDM altered antioxidant responses. HDM exposure also reduced cell proliferation and induced cell death. Importantly, HDM-induced DNA damage can be prevented by the antioxidants glutathione and catalase, suggesting that HDM-induced reactive oxygen and nitrogen species can be neutralized by antioxidants. Mechanistic studies revealed that HDM-induced cellular injury is NADPH oxidase (NOX)-dependent, and apocynin, a NOX inhibitor, protected cells from double-strand breaks induced by HDM. Our results show that direct exposure of bronchial epithelial cells to HDM leads to the production of reactive oxygen and nitrogen species that damage DNA and induce cytotoxicity. Antioxidants and NOX inhibitors can prevent HDM-induced DNA damage, revealing a novel role for antioxidants and NOX inhibitors in mitigating allergic airway disease.


Assuntos
Alérgenos/imunologia , Antioxidantes/fisiologia , Brônquios/imunologia , Dano ao DNA , Células Epiteliais/imunologia , Pyroglyphidae/imunologia , Espécies Reativas de Oxigênio/metabolismo , Acetofenonas/imunologia , Acetofenonas/farmacologia , Ar , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Asma/etiologia , Asma/imunologia , Asma/fisiopatologia , Brônquios/citologia , Brônquios/metabolismo , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/farmacologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo
6.
Br J Pharmacol ; 174(7): 540-552, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28093718

RESUMO

BACKGROUND AND PURPOSE: Ribosomal protein S3 (RPS3) is a 40S ribosomal protein of the S3P family essential for implementing protein translation. RPS3 has recently been found to interact with the p65 subunit of the NF-κB complex and promote p65 DNA-binding activity. Persistent activation of the NF-κB pathway is evident in allergic asthma. We hypothesized that gene silencing of lung RPS3 can ameliorate allergic airway inflammation. EXPERIMENTAL APPROACH: The gene silencing efficacy of RPS3 siRNA was screened in three different mouse cell lines by real-time PCR and immunoblotting. Protective effects of intratracheal RPS3 siRNA in a house dust mite (HDM) mouse asthma model were determined by measuring cell counts in lung lavage fluid and lung sections, lung cytokine profiles and airway hyperresponsiveness (AHR). KEY RESULTS: RPS3 siRNA markedly knocked down RPS3 levels in all mouse cell lines tested, and in mouse lung tissues, blocked TNF-α- or HDM-induced release of mediators by the cultured cells and reduced eosinophil counts in lung lavage fluid from the HDM mouse asthma model. RPS3 siRNA lessened HDM-induced airway mucus hypersecretion, cytokine production and serum IgE elevation. Moreover, RPS3 knockdown significantly suppressed methacholine-induced AHR in experimental asthma. RPS3 siRNA disrupted TNF-α-induced NF-κB activation in a NF-κB reporter gene assay in vitro and prevented the nuclear accumulation of p65 subunit and p65 transcriptional activation in HDM-challenged lungs and cells. CONCLUSIONS AND IMPLICATIONS: RPS3 gene silencing ameliorates experimental asthma, probably by disrupting NF-κB activity. RPS3 could be a novel therapeutic target for allergic airway inflammation.


Assuntos
Asma/genética , Asma/prevenção & controle , Inativação Gênica , Proteínas Ribossômicas/genética , Animais , Asma/terapia , Feminino , Terapia Genética , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Células RAW 264.7
7.
Sci Rep ; 6: 26076, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27188343

RESUMO

Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process.


Assuntos
Lesão Pulmonar Aguda/patologia , Metaboloma , Infecções por Orthomyxoviridae/patologia , Pneumonia Viral/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Vírus da Influenza A/crescimento & desenvolvimento , Pulmão/patologia , Espectrometria de Massas , Metabolômica , Camundongos , Soro/química , Fatores de Tempo
8.
J Allergy Clin Immunol ; 138(1): 84-96.e1, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27157131

RESUMO

BACKGROUND: Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. OBJECTIVE: We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. METHODS: We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. RESULTS: HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. CONCLUSION: This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology.


Assuntos
Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Asma/etiologia , Asma/metabolismo , Quebras de DNA de Cadeia Dupla , Pulmão/imunologia , Pulmão/metabolismo , Estresse Oxidativo , Pyroglyphidae/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Caspase 3/metabolismo , Morte Celular/genética , Morte Celular/imunologia , Citocinas/metabolismo , Reparo do DNA , Modelos Animais de Doenças , Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
9.
J Nat Prod ; 79(5): 1308-15, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27104764

RESUMO

Cigarette smoke (CS) is associated with many maladies, one of which is chronic obstructive pulmonary disease (COPD). As the disease progresses, patients are more prone to develop COPD exacerbation episodes by bacterial infection, particularly to nontypeable Haemophilus influenza (NTHi) infection. The present study aimed to develop a CS-exposed mouse model that increases inflammation induced by NTHi challenge and investigate the protective effects of andrographolide, a bioactive molecule with anti-inflammatory and antioxidant properties isolated from the plant Andrographis paniculata. Female BALB/c mice exposed to 2 weeks of CS followed by a single intratracheal instillation of NTHi developed increased macrophage and neutrophil pulmonary infiltration, augmented cytokine levels, and heightened oxidative damage. Andrographolide effectively reduced lung cellular infiltrates and decreased lung levels of TNF-α, IL-1ß, CXCL1/KC, 8-OHdG, matrix metalloproteinase-8 (MMP-8), and MMP-9. The protective actions of andrographolide on CS-predisposed NTHi inflammation might be attributable to increased nuclear factor erythroid-2-related factor 2 (Nrf2) activation and decreased Kelch-like ECH-associated protein 1 (Keap1) repressor function, resulting in enhanced gene expression of antioxidant enzymes including heme oxygenase-1 (HO-1), glutathione reductase (GR), glutathione peroxidase-2 (GPx-2), glutamate-cysteine ligase modifier (GCLM), and NAD(P)H quinone oxidoreductase 1 (NQO1). Taken together, these findings strongly support a therapeutic potential for andrographolide in preventing lung inflammation caused by NTHi in cigarette smokers.


Assuntos
Andrographis/química , Diterpenos/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Nicotiana/efeitos adversos , Plantas Medicinais/química , Fumar/efeitos adversos , Animais , Diterpenos/química , Feminino , Glutamato-Cisteína Ligase/metabolismo , Infecções por Haemophilus/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Humanos , Metaloproteinase 8 da Matriz/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Molecular , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Pneumonia/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/patologia , Fator de Necrose Tumoral alfa/metabolismo
10.
J Immunol ; 195(2): 437-44, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26041537

RESUMO

Inflammation and oxidative damage contribute to the pathogenesis of asthma. Although corticosteroid is the first-line treatment for asthma, a subset of patients is steroid resistant, and chronic steroid use causes side effects. Because vitamin E isoform γ-tocotrienol possesses both antioxidative and anti-inflammatory properties, we sought to determine protective effects of γ-tocotrienol in a house dust mite (HDM) experimental asthma model. BALB/c mice were sensitized and challenged with HDM. Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts, oxidative damage biomarkers, and cytokine levels. Lungs were examined for cell infiltration and mucus hypersecretion, as well as the expression of antioxidants and proinflammatory biomarkers. Sera were assayed for IgE and γ-tocotrienol levels. Airway hyperresponsiveness in response to methacholine was measured. γ-Tocotrienol displayed better free radical-neutralizing activity in vitro and inhibition of BAL fluid total, eosinophil, and neutrophil counts in HDM mouse asthma in vivo, as compared with other vitamin E isoforms, including α-tocopherol. Besides, γ-tocotrienol abated HDM-induced elevation of BAL fluid cytokine and chemokine levels, total reactive oxygen species and oxidative damage biomarker levels, and of serum IgE levels, but it promoted lung-endogenous antioxidant activities. Mechanistically, γ-tocotrienol was found to block nuclear NF-κB level and enhance nuclear Nrf2 levels in lung lysates to greater extents than did α-tocopherol and prednisolone. More importantly, γ-tocotrienol markedly suppressed methacholine-induced airway hyperresponsiveness in experimental asthma. To our knowledge, we have shown for the first time the protective actions of vitamin E isoform γ-tocotrienol in allergic asthma.


Assuntos
Alérgenos/imunologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Asma/tratamento farmacológico , Cromanos/farmacologia , Dermatophagoides pteronyssinus/imunologia , Vitamina E/análogos & derivados , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Expressão Gênica , Imunoglobulina E/sangue , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Cloreto de Metacolina/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Estresse Oxidativo/efeitos dos fármacos , Prednisolona/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Vitamina E/farmacologia , alfa-Tocoferol/farmacologia
11.
Cell Mol Life Sci ; 72(15): 2973-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25809161

RESUMO

Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.


Assuntos
Dano ao DNA/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/fisiopatologia , Regeneração/genética , Regeneração/fisiologia , Animais , Linhagem Celular , Reparo do DNA/genética , Cães , Vírus da Influenza A Subtipo H1N1 , Pulmão/fisiopatologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Estresse Oxidativo/genética , Pneumonia/fisiopatologia , Pneumonia/virologia
12.
Phytomedicine ; 21(12): 1638-44, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25442271

RESUMO

Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2h before 4% cigarette smoke exposure for 1h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1ß, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Artemisininas/farmacologia , Nicotiana/efeitos adversos , Fumar/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Artesunato , Líquido da Lavagem Broncoalveolar/química , Catalase/metabolismo , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Transdução de Sinais
13.
Pharmacol Ther ; 142(1): 126-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24316259

RESUMO

Artemisinins are a family of sesquiterpene trioxane lactone anti-malarial agents originally derived from Artemisia annua L. The anti-malarial action of artemisinins involves the formation of free radicals via cleavage of the endoperoxide bond in its structure, which mediate eradication of the Plasmodium species. With its established safety record in millions of malarial patients, artemisinins are also being investigated in diseases like infections, cancers and inflammation. Artemisinins have been reported to possess robust inhibitory effects against viruses (e.g. Human cytomegalovirus), protozoa (e.g. Toxoplasma gondii), helminths (e.g. Schistosoma species and Fasciola hepatica) and fungi (e.g. Cryptococcus neoformans). Artemisinins have demonstrated cytotoxic effects against a variety of cancer cells by inducing cell cycle arrest, promoting apoptosis, preventing angiogenesis, and abrogating cancer invasion and metastasis. Artemisinins have been evaluated in animal models of autoimmune diseases, allergic disorders and septic inflammation. The anti-inflammatory effects of artemisinins have been attributed to the inhibition of Toll-like receptors, Syk tyrosine kinase, phospholipase Cγ, PI3K/Akt, MAPK, STAT-1/3/5, NF-κB, Sp1 and Nrf2/ARE signaling pathways. This review provides a comprehensive update on non-malarial use of artemisinins, modes of action of artemisinins in different disease conditions, and drug development of artemisinins beyond anti-malarial. With the concerted efforts in the novel synthesis of artemisinin analogs and clinical pharmacology of artemisinins, it is likely that artemisinin drugs will become a major armamentarium combating a variety of human diseases beyond malaria.


Assuntos
Artemisininas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Antiparasitários/farmacologia , Antivirais/farmacologia , Humanos
14.
Phytomedicine ; 20(10): 853-60, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23632085

RESUMO

Allergy is an acquired hypersensitivity reaction of the immune system mediated by cross-linking of the allergen-specific IgE-bound high-affinity IgE receptors, leading to immediate mast cell degranulation. Rottlerin is an active molecule isolated from Mallotus philippinensis, a medicinal plant used in Ayurvedic Medicine System for anti-allergic and anti-helminthic treatments. The present study investigated potential anti-allergic effects of rottlerin in animal models of IgE-dependent anaphylaxis and the anti-allergic mechanisms of action of rottlerin in mast cells. Anti-allergic actions of rottlerin were evaluated in passive cutaneous anaphylaxis and passive systemic anaphylaxis mouse models, and in anaphylactic contraction of bronchial rings isolated from sensitized guinea pigs. Direct mast cell-stabilizing effect of rottlerin was examined in RBL-2H3 mast cell line. Anti-allergic signaling mechanisms of action of rottlerin in mast cells were also examined. Rottlerin prevented IgE-mediated cutaneous vascular extravasation, hypothermia, elevation in plasma histamine level and tracheal tissue mast cell degranulation in mice in a dose-dependent manner. In addition, rottlerin suppressed ovalbumin-induced guinea pig bronchial smooth muscle contraction. Furthermore, rottlerin concentration-dependently blocked IgE-mediated immediate release of ß-hexosaminidase from RBL-2H3 mast cells. Rottlerin was found to inhibit IgE-induced PLCγ1 and Akt phosphorylation, production of IP3 and rise in cytosolic Ca²âº level in mast cells. We report here for the first time that rottlerin possesses anti-allergic activity by blocking IgE-induced mast cell degranulation, providing a foundation for developing rottlerin for the treatment of allergic asthma and other mast cell-mediated allergic disorders.


Assuntos
Acetofenonas/uso terapêutico , Anafilaxia/prevenção & controle , Antialérgicos/uso terapêutico , Benzopiranos/uso terapêutico , Mallotus (Planta) , Mastócitos/patologia , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Cobaias , Mallotus (Planta)/química , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/uso terapêutico , Ratos
15.
Clin Exp Pharmacol Physiol ; 39(3): 300-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22017767

RESUMO

1. Andrographis paniculata (Burm. f) Nees, commonly known as 'king of bitters', is a herbaceous plant belonging to the Family Acanthaceae. It has been widely used for centuries in Asian countries like China, India, Thailand and Malaysia for the treatment of sore throat, flu and upper respiratory tract infections. 2. Andrographolide, 14-deoxy-11,12-didehydroandrographolide and neoandrographolide are examples of the major labdane diterpenoids isolated from A. paniculata. These bioactive molecules have exhibited varying degrees of anti-inflammatory and anticancer activities in both in vitro and in vivo experimental models of inflammation and cancer. 3. Extensive libraries of andrographolide analogues have been synthesised mainly by modifying the α,ß-unsaturated γ-butyrolactone moiety, the two double bonds Δ(8,(17)) and Δ(12,(13)) and the three hydroxyls at C-3 (secondary), C-14 (allylic) and C-19 (primary). Many of these synthetic analogues exhibit superior anticancer activity over the naturally occurring andrographolides. 4. Andrographolide and its derivatives have been shown to have anti-inflammatory effects in experimental models of asthma, stroke and arthritis, as well as in patients with upper respiratory tract infections. Andrographolide reduces the production of cytokines, chemokines, adhesion molecules, nitric oxide and lipid mediators, probably via inhibition of the nuclear factor (NF)-κB signalling pathway. 5. The anticancer mechanisms for andrographolide include inhibition of Janus tyrosine kinases-signal transducers and activators of transcription, phosphatidylinositol 3-kinase and NF-κB signalling pathways, suppression of heat shock protein 90, cyclins and cyclin-dependent kinases, metalloproteinases and growth factors, and the induction of tumour suppressor proteins p53 and p21, leading to inhibition of cancer cell proliferation, survival, metastasis and angiogenesis. 6. Andrographolide drug discovery is a promising strategy for the development of a novel class of anti-inflammatory and anticancer drugs.


Assuntos
Andrographis/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Produtos Biológicos/uso terapêutico , Diterpenos/uso terapêutico , Mediadores da Inflamação/fisiologia , Mediadores da Inflamação/uso terapêutico , Neoplasias/tratamento farmacológico , Andrographis/fisiologia , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Humanos , Mediadores da Inflamação/química , Neoplasias/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...