Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11577, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773243

RESUMO

Fluid dynamics computations for tube-like geometries are crucial in biomedical evaluations of vascular and airways fluid dynamics. Physics-Informed Neural Networks (PINNs) have emerged as a promising alternative to traditional computational fluid dynamics (CFD) methods. However, vanilla PINNs often demand longer training times than conventional CFD methods for each specific flow scenario, limiting their widespread use. To address this, multi-case PINN approach has been proposed, where varied geometry cases are parameterized and pre-trained on the PINN. This allows for quick generation of flow results in unseen geometries. In this study, we compare three network architectures to optimize the multi-case PINN through experiments on a series of idealized 2D stenotic tube flows. The evaluated architectures include the 'Mixed Network', treating case parameters as additional dimensions in the vanilla PINN architecture; the "Hypernetwork", incorporating case parameters into a side network that computes weights in the main PINN network; and the "Modes" network, where case parameters input into a side network contribute to the final output via an inner product, similar to DeepONet. Results confirm the viability of the multi-case parametric PINN approach, with the Modes network exhibiting superior performance in terms of accuracy, convergence efficiency, and computational speed. To further enhance the multi-case PINN, we explored two strategies. First, incorporating coordinate parameters relevant to tube geometry, such as distance to wall and centerline distance, as inputs to PINN, significantly enhanced accuracy and reduced computational burden. Second, the addition of extra loss terms, enforcing zero derivatives of existing physics constraints in the PINN (similar to gPINN), improved the performance of the Mixed Network and Hypernetwork, but not that of the Modes network. In conclusion, our work identified strategies crucial for future scaling up to 3D, wider geometry ranges, and additional flow conditions, ultimately aiming towards clinical utility.

2.
Front Cardiovasc Med ; 11: 1349338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798923

RESUMO

Introduction: Ejection fraction (EF) is widely used to evaluate heart function during heart failure (HF) due to its simplicity compared but it may misrepresent cardiac function during ventricular hypertrophy, especially in heart failure with preserved EF (HFpEF). To resolve this shortcoming, we evaluate a correction factor to EF, which is equivalent to computing EF at the mid-wall layer (without the need for mid-layer identification) rather than at the endocardial surface, and thus better complements other complex metrics. Method: The retrospective cohort data was studied, consisting of 2,752 individuals (56.5% male, age 69.3 ± 16.4 years) admitted with a request of a troponin test and undergoing echocardiography as part of their clinical assessment across three centres. Cox-proportional regression models were constructed to compare the adjusted EF (EFa) to EF in evaluating risk of heart failure admissions. Result: Comparing HFpEF patients to non-HF cases, there was no significant difference in EF (62.3 ± 7.6% vs. 64.2 ± 6.2%, p = 0.79), but there was a significant difference in EFa (56.6 ± 6.4% vs. 61.8 ± 9.9%, p = 0.0007). Both low EF and low EFa were associated with a high HF readmission risk. However, in the cohort with a normal EF (EF ≥ 50%), models using EFa were significantly more associative with HF readmissions within 3 years, where the leave one out cross validation ROC analysis showed a 18.6% reduction in errors, and Net Classification Index (NRI) analysis showed that risk increment classification of events increased by 12.2%, while risk decrement classification of non-events decreased by 16.6%. Conclusion: EFa is associated with HF readmission in patients with a normal EF.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38589684

RESUMO

Finite Element simulations are a robust way of investigating cardiac biomechanics. To date, it has only been performed with the left ventricle (LV) alone for fetal hearts, even though results are likely different with biventricular (BiV) simulations. In this research, we conduct BiV simulations of the fetal heart based on 4D echocardiography images to show that it can capture the biomechanics of the normal healthy fetal heart, as well as those of fetal aortic stenosis better than the LV alone simulations. We found that performing LV alone simulations resulted in overestimation of LV stresses and pressures, compared to BiV simulations. Interestingly, inserting a compliance between the LV and right ventricle (RV) in the lumped parameter model of the LV only simulation effectively resolved these overestimations, demonstrating that the septum could be considered to play a LV-RV pressure communication role. However, stresses and strains spatial patterns remained altered from BiV simulations after the addition of the compliance. The BiV simulations corroborated previous studies in showing disease effects on the LV, where fetal aortic stenosis (AS) drastically elevated LV pressures and reduced strains and stroke volumes, which were moderated down with the addition of mitral regurgitation (MR). However, BiV simulations enabled an evaluation of the RV as well, where we observed that effects of the AS and MR on pressures and stroke volumes were generally much smaller and less consistent. The BiV simulations also enabled investigations of septal dynamics, which showed a rightward shift with AS, and partial restoration with MR. Interestingly, AS tended to enhance RV stroke volume, but MR moderated that down.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38683446

RESUMO

Fetal critical aortic stenosis with evolving hypoplastic left heart syndrome (CAS-eHLHS) can progress to a univentricular (UV) birth malformation. Catheter-based fetal aortic valvuloplasty (FAV) can resolve stenosis and reduce the likelihood of malformation progression. However, we have limited understanding of the biomechanical impact of FAV and subsequent LV responses. Therefore, we performed image-based finite element (FE) modeling of 4 CAS-eHLHS fetal hearts, by performing iterative simulations to match image-based characteristics and then back-computing physiological parameters. We used pre-FAV simulations to conduct virtual FAV (vFAV) and compared pre-FAV and post-FAV simulations. vFAV simulations generally enabled partial restoration of several physiological features toward healthy levels, including increased stroke volume and myocardial strains, reduced aortic valve (AV) and mitral valve regurgitation (MVr) velocities, reduced LV and LA pressures, and reduced peak myofiber stress. FAV often leads to aortic valve regurgitation (AVr). Our simulations showed that AVr could compromise LV and LA depressurization but it could also significantly increase stroke volume and myocardial deformational stimuli. Post-FAV scans and simulations showed FAV enabled only partial reduction of the AV dissipative coefficient. Furthermore, LV contractility and peripheral vascular resistance could change in response to FAV, preventing decreases in AV velocity and LV pressure, compared with what would be anticipated from stenosis relief. This suggested that case-specific post-FAV modeling is required to fully capture cardiac functionality. Overall, image-based FE modeling could provide mechanistic details of the effects of FAV, but computational prediction of acute outcomes was difficult due to a patient-dependent physiological response to FAV.

5.
J Physiol ; 602(4): 663-681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324229

RESUMO

Fetal critical aortic stenosis with evolving hypoplastic left heart syndrome (CAS-eHLHS) causes biomechanical and functional aberrations, leading to a high risk of progression to hypoplastic left heart syndrome (HLHS) at birth. Fetal aortic valvuloplasty (FAV) can resolve outflow obstruction and may reduce progression risk. However, it is currently difficult to accurately predict which patients will respond to the intervention and become functionally biventricular (BV) at birth, as opposed to becoming functionally univentricular (UV). This prediction is important for patient selection, parental counselling, and surgical planning. Therefore, we investigated whether biomechanics parameters from pre-FAV image-based computations could robustly distinguish between CAS-eHLHS cases with BV or UV outcomes in a retrospective cohort. To do so we performed image-based finite element biomechanics modelling of nine CAS-eHLHS cases undergoing intervention and six healthy fetal control hearts, and found that a biomechanical parameter, peak systolic myofibre stress, showed a uniquely large difference between BV and UV cases, which had a larger magnitude effect than echocardiography parameters. A simplified equation was derived for quick and easy estimation of myofibre stress from echo measurements via principal component analysis. When tested on a retrospective cohort of 37 CAS-eHLHS cases, the parameter outperformed other parameters in predicting UV versus BV outcomes, and thus has a high potential of improving outcome predictions, if incorporated into patient selection procedures. Physiologically, high myocardial stresses likely indicate a healthier myocardium that can withstand high stresses and resist pathological remodelling, which can explain why it is a good predictor of BV outcomes. KEY POINTS: Predicting the morphological birth outcomes (univentricular versus biventricular) of fetal aortic valvuloplasty for fetal aortic stenosis with evolving HLHS is important for accurate patient selection, parental counselling and management decisions. Computational simulations show that a biomechanics parameter, pre-intervention peak systolic myofibre stress, is uniquely robust in distinguishing between such outcomes, outperforming all echo parameters. An empirical equation was developed to quickly compute peak systolic myofibre stress from routine echo measurements and was the best predictor of outcomes among a wide range of parameters tested.


Assuntos
Estenose da Valva Aórtica , Síndrome do Coração Esquerdo Hipoplásico , Recém-Nascido , Humanos , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Síndrome do Coração Esquerdo Hipoplásico/terapia , Síndrome do Coração Esquerdo Hipoplásico/etiologia , Estudos Retrospectivos , Estenose da Valva Aórtica/diagnóstico por imagem , Coração Fetal , Miocárdio
6.
J Physiol ; 602(4): 597-617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345870

RESUMO

Cardiac trabeculae are uneven ventricular muscular structures that develop during early embryonic heart development at the outer curvature of the ventricle. Their biomechanical function is not completely understood, and while their formation is known to be mechanosensitive, it is unclear whether ventricular tissue internal stresses play an important role in their formation. Here, we performed imaging and image-based cardiac biomechanics simulations on zebrafish embryonic ventricles to investigate these issues. Microscopy-based ventricular strain measurements show that the appearance of trabeculae coincided with enhanced deformability of the ventricular wall. Image-based biomechanical simulations reveal that the presence of trabeculae reduces ventricular tissue internal stresses, likely acting as structural support in response to the geometry of the ventricle. Passive ventricular pressure-loading experiments further reveal that the formation of trabeculae is associated with a spatial homogenization of ventricular tissue stiffnesses in healthy hearts, but gata1 morphants with a disrupted trabeculation process retain a spatial stiffness heterogeneity. Our findings thus suggest that modulating ventricular wall deformability, stresses, and stiffness are among the biomechanical functions of trabeculae. Further, experiments with gata1 morphants reveal that a reduction in fluid pressures and consequently ventricular tissue internal stresses can disrupt trabeculation, but a subsequent restoration of ventricular tissue internal stresses via vasopressin rescues trabeculation, demonstrating that tissue stresses are important to trabeculae formation. Overall, we find that tissue biomechanics is important to the formation and function of embryonic heart trabeculation. KEY POINTS: Trabeculations are fascinating and important cardiac structures and their abnormalities are linked to embryonic demise. However, their function in the heart and their mechanobiological formation processes are not completely understood. Our imaging and modelling show that tissue biomechanics is the key here. We find that trabeculations enhance cardiac wall deformability, reduce fluid pressure stresses, homogenize wall stiffness, and have alignments that are optimal for providing load-bearing structural support for the heart. We further discover that high ventricular tissue internal stresses consequent to high fluid pressures are needed for trabeculation formation through a rescue experiment, demonstrating that myocardial tissue stresses are as important as fluid flow wall shear stresses for trabeculation formation.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Fenômenos Biomecânicos , Transdução de Sinais/fisiologia , Miocárdio , Coração , Ventrículos do Coração
7.
Biomech Model Mechanobiol ; 22(4): 1313-1332, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148404

RESUMO

Left ventricle myocardium has a complex micro-architecture, which was revealed to consist of myocyte bundles arranged in a series of laminar sheetlets. Recent imaging studies demonstrated that these sheetlets re-orientated and likely slided over each other during the deformations between systole and diastole, and that sheetlet dynamics were altered during cardiomyopathy. However, the biomechanical effect of sheetlet sliding is not well-understood, which is the focus here. We conducted finite element simulations of the left ventricle (LV) coupled with a windkessel lumped parameter model to study sheetlet sliding, based on cardiac MRI of a healthy human subject, and modifications to account for hypertrophic and dilated geometric changes during cardiomyopathy remodeling. We modeled sheetlet sliding as a reduced shear stiffness in the sheet-normal direction and observed that (1) the diastolic sheetlet orientations must depart from alignment with the LV wall plane in order for sheetlet sliding to have an effect on cardiac function, that (2) sheetlet sliding modestly aided cardiac function of the healthy and dilated hearts, in terms of ejection fraction, stroke volume, and systolic pressure generation, but its effects were amplified during hypertrophic cardiomyopathy and diminished during dilated cardiomyopathy due to both sheetlet angle configuration and geometry, and that (3) where sheetlet sliding aided cardiac function, it increased tissue stresses, particularly in the myofibre direction. We speculate that sheetlet sliding is a tissue architectural adaptation to allow easier deformations of the LV walls so that LV wall stiffness will not hinder function, and to provide a balance between function and tissue stresses. A limitation here is that sheetlet sliding is modeled as a simple reduction in shear stiffness, without consideration of micro-scale sheetlet mechanics and dynamics.


Assuntos
Cardiomiopatia Dilatada , Função Ventricular Esquerda , Humanos , Miocárdio , Diástole , Sístole , Ventrículos do Coração
8.
Ann Biomed Eng ; 51(5): 1063-1078, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37032398

RESUMO

Left atrial ligation (LAL) of the chick embryonic heart is a model of the hypoplastic left heart syndrome (HLHS) where a purely mechanical intervention without genetic or pharmacological manipulation is employed to initiate cardiac malformation. It is thus a key model for understanding the biomechanical origins of HLHS. However, its myocardial mechanics and subsequent gene expressions are not well-understood. We performed finite element (FE) modeling and single-cell RNA sequencing to address this. 4D high-frequency ultrasound imaging of chick embryonic hearts at HH25 (ED 4.5) were obtained for both LAL and control. Motion tracking was performed to quantify strains. Image-based FE modeling was conducted, using the direction of the smallest strain eigenvector as the orientations of contractions, the Guccione active tension model and a Fung-type transversely isotropic passive stiffness model that was determined via micro-pipette aspiration. Single-cell RNA sequencing of left ventricle (LV) heart tissues was performed for normal and LAL embryos at HH30 (ED 6.5) and differentially expressed genes (DEG) were identified.After LAL, LV thickness increased by 33%, strains in the myofiber direction increased by 42%, while stresses in the myofiber direction decreased by 50%. These were likely related to the reduction in ventricular preload and underloading of the LV due to LAL. RNA-seq data revealed potentially related DEG in myocytes, including mechano-sensing genes (Cadherins, NOTCH1, etc.), myosin contractility genes (MLCK, MLCP, etc.), calcium signaling genes (PI3K, PMCA, etc.), and genes related to fibrosis and fibroelastosis (TGF-ß, BMP, etc.). We elucidated the changes to the myocardial biomechanics brought by LAL and the corresponding changes to myocyte gene expressions. These data may be useful in identifying the mechanobiological pathways of HLHS.


Assuntos
Fibrilação Atrial , Síndrome do Coração Esquerdo Hipoplásico , Humanos , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Síndrome do Coração Esquerdo Hipoplásico/genética , Fenômenos Biomecânicos , Miocárdio/metabolismo , Átrios do Coração/diagnóstico por imagem , Ventrículos do Coração
9.
J Am Soc Echocardiogr ; 36(5): 543-552, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36623710

RESUMO

BACKGROUND: Echocardiographic quantification of fetal cardiac strain is important to evaluate function and the need for intervention, with both two-dimensional (2D) and three-dimensional (3D) strain measurements currently feasible. However, discrepancies between 2D and 3D measurements have been reported, the etiologies of which are unclear. This study sought to determine the etiologies of the differences between 2D and 3D strain measurements. METHODS: A validated cardiac motion-tracking algorithm was used on 3D cine ultrasound images acquired in 26 healthy fetuses. Both 2D and 3D myocardial strain quantifications were performed on each image set for controlled comparisons. Finite element modeling of 2 left ventricle (LV) models with minor geometrical differences were performed with various helix angle configurations for validating image processing results. RESULTS: Three-dimensional longitudinal strain (LS) was significantly lower than 2D LS for the LV free wall and septum but not for the right ventricular (RV) free wall, while 3D circumferential strain (CS) was significantly higher than 2D CS for the LV, RV, and septum. The LS discrepancy was due to 2D long-axis imaging not capturing the out-of-plane motions associated with LV twist, while the CS discrepancy was due to the systolic motion of the heart toward the apex that caused out-of-plane motions in 2D short-axis imaging. A timing mismatch between the occurrences of peak longitudinal and circumferential dimensions caused a deviation in zero-strain referencing between 2D and 3D strain measurements, contributing to further discrepancies between the 2. CONCLUSIONS: Mechanisms for discrepancies between 2D and 3D strain measurements in fetal echocardiography were identified, and inaccuracies associated with 2D strains were highlighted. Understanding of this mechanism is useful and important for future standardization of fetal cardiac strain measurements, which we propose to be important in view of large discrepancies in measured values in the literature.


Assuntos
Ecocardiografia Tridimensional , Humanos , Ecocardiografia Tridimensional/métodos , Ventrículos do Coração/diagnóstico por imagem , Ecocardiografia/métodos , Função Ventricular Esquerda , Feto , Reprodutibilidade dos Testes
10.
Biomech Model Mechanobiol ; 22(2): 629-643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36550241

RESUMO

The helix angle configuration of the myocardium is understood to contribute to the heart function, as finite element (FE) modeling of postnatal hearts showed that altered configurations affected cardiac function and biomechanics. However, similar investigations have not been done on the fetal heart. To address this, we performed image-based FE simulations of fetal left ventricles (LV) over a range of helix angle configurations, assuming a linear variation of helix angles from epicardium to endocardium. Results showed that helix angles have substantial influence on peak myofiber stress, cardiac stroke work, myocardial deformational burden, and spatial variability of myocardial strain. A good match between LV myocardial strains from FE simulations to those measured from 4D fetal echo images could only be obtained if the transmural variation of helix angle was generally between 110 and 130°, suggesting that this was the physiological range. Experimentally discovered helix angle configurations from the literature were found to produce high peak myofiber stress, high cardiac stroke work, and a low myocardial deformational burden, but did not coincide with configurations that would optimize these characteristics. This may suggest that the fetal development of myocyte orientations depends concurrently on several factors rather than a single factor. We further found that the shape, rather than the size of the LV, determined the manner at which helix angles influenced these characteristics, as this influence changed significantly when the LV shape was varied, but not when a heart was scaled from fetal to adult size while retaining the same shape. This may suggest that biomechanical optimality would be affected during diseases that altered the geometric shape of the LV.


Assuntos
Ventrículos do Coração , Miocárdio , Fenômenos Biomecânicos , Feto , Pericárdio , Função Ventricular Esquerda
11.
J Biomech ; 144: 111348, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265421

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for about half of heart failure cases, but the progression of cardiac biomechanics during pathogenesis is not completely understood. We investigated a published porcine model of HFpEF, generated by progressive constriction of an aortic cuff causing progressive left ventricle (LV) pressure overload, and characterized by hypertrophy, diastolic dysfunction and overt HF with elevated plasma beta natriuretic peptide (BNP). We characterized morphological and functional features and performed image-based finite element modelling over multiple time points, so as to understand how biomechanics evolved with morphological and functional changes during pathogenesis, and to provide data for future growth and remodeling investigations. Results showed that the hypertrophic responses quickly manifested and were effective at preventing an elevation of systolic myocardial stresses, suggesting active compensated remodeling. Consequent to the hypertrophy, diastolic myocardial stresses decreased despite the elevations in diastolic pressures. The left ventricle hypertrophy (LVH) myocardium also exhibited a quick elevation of active tension at the onset of the disease. There was a progressive and significant decrease in myocardial strain, which was more significant in the longitudinal direction. Further, elevated myocardial stiffness and diastolic pressures, which reflected diastolic dysfunction, also manifested, but this was delayed from the onset of the disease. Correlation analysis showed that hypertrophy was closely correlated to systolic pressure, active tension and systolic myocardial stress, suggesting that these factors may play a role in initiating hypertrophy. Myocardial stiffness was weakly correlated to LV pressures and myocardial stresses.


Assuntos
Insuficiência Cardíaca , Suínos , Animais , Volume Sistólico/fisiologia , Insuficiência Cardíaca/etiologia , Remodelação Ventricular , Função Ventricular Esquerda/fisiologia , Hipertrofia/complicações
12.
Front Physiol ; 13: 898775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711303

RESUMO

Background: Both heart failure (HF) with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) can present a wide variety of cardiac morphologies consequent to cardiac remodeling. We sought to study if geometric changes to the heart during such remodeling will adversely affect the ejection fraction (EF) parameter's ability to serve as an indicator of heart function, and to identify the mechanism for it. Methods and Results: A numerical model that simulated the conversion of myocardial strain to stroke volume was developed from two porcine animal models of heart failure. Hypertrophic wall thickening was found to elevate EF, while left ventricle (LV) dilation was found to depress EF when myocardial strain was kept constant, causing EF to inaccurately represent the overall strain function. This was caused by EF being calculated using the endocardial boundary rather than the mid-wall layer. Radial displacement of the endocardial boundary resulted in endocardial strain deviating from the overall LV strain, and this deviation varied with LV geometric changes. This suggested that using the epi- or endo-boundaries to calculate functional parameters was not effective, and explained why EF could be adversely affected by geometric changes. Further, when EF was modified by calculating it at the mid-wall layer instead of at the endocardium, this shortcoming was resolved, and the mid-wall EF could differentiate between healthy and HFpEF subjects in our animal models, while the traditional EF could not. Conclusion: We presented the mechanism to explain why EF can no longer effectively indicate cardiac function during cardiac geometric changes relevant to HF remodeling, losing the ability to distinguish between hypertrophic diseased hearts from healthy hearts. Measuring EF at the mid-wall location rather than endocardium can avoid the shortcoming and better represent the cardiac strain function.

13.
PLoS Biol ; 20(1): e3001505, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030171

RESUMO

In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial-mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal-endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation.


Assuntos
Valvas Cardíacas/anormalidades , Hemodinâmica , Fatores de Transcrição NFATC/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Endotélio , Coração/embriologia , Hemorreologia , Fenômenos Mecânicos , Mesoderma , Fatores de Transcrição NFATC/genética , Peixe-Zebra/genética
14.
Med Image Anal ; 74: 102229, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571337

RESUMO

It is important to improve echocardiography image quality, because the accuracy of echocardiographic assessment and diagnosis relies on image quality. Previous work on 2D temporal image compounding for image frames with matching cardiac phases (synchronous), and for temporally neighbouring image frames (asynchronous) over small ranges of time frames showed good improvement to image quality. Here, we extend this by performing asynchronous temporal compounding to echocardiographic images in 3D, involving all frames within a cardiac cycle, via a robust 3D cardiac motion estimation algorithm to describe the large image deformations. After compounding, the images can be reanimated via the motion model. Various methods of fusing image frames together are tested, including mean, max, and wavelet methods, and outlier rejection algorithms. The compounding algorithm is applied on 3D human adult, porcine adolescent, and human fetal echocardiography images. Results show significant improvements to contrast-to-noise ratio (CNR) and boundary clarity, and significantly decreased variability in manual quantification of cardiac chamber volumes after compounding. Interestingly, compounding can extend the field of view of the echo images, by reconstructing cardiac structures that momentarily exceeded the field of view, using the motion estimation algorithm to calculate their locations outside the field of view during these time periods. Although all compounding methods provide general improvements, the mean method led to blurred boundaries, while the max methods led to high variability of CNR. Outlier rejection algorithms were found to be useful in addressing these weaknesses.


Assuntos
Ecocardiografia Tridimensional , Ecocardiografia , Algoritmos , Animais , Coração/diagnóstico por imagem , Humanos , Movimento (Física) , Suínos
15.
Dev Dyn ; 250(12): 1759-1777, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34056790

RESUMO

BACKGROUND: Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS: Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS: Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.


Assuntos
Fenômenos Biomecânicos/efeitos dos fármacos , Diacetil/análogos & derivados , Coração/embriologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos/fisiologia , Diacetil/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiologia , Hidrodinâmica , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Organogênese/efeitos dos fármacos , Organogênese/genética , Organogênese/fisiologia , Estresse Mecânico , Peixe-Zebra/embriologia , Peixe-Zebra/genética
16.
Quant Imaging Med Surg ; 11(4): 1567-1585, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33816192

RESUMO

BACKGROUND: 4D ultrasound images of human fetal heart are important for medical applications such as evaluation of fetal heart function and early diagnosis of congenital heart diseases. However, due to the high noise and low contrast characteristics in fetal ultrasound images, denoising and enhancements are important. METHODS: In this paper, a special method framework for denoising and enhancing is proposed. It consists of a 4D-NLM (non-local means) denoising method for 4D fetal heart ultrasound image sequence, which takes advantage of context similar information in neighboring images to denoise the target image, and an enhancing method called the Adaptive Clipping for Each Histogram Pillar (ACEHP), which is designed to enhance myocardial spaces to distinguish them from blood spaces. RESULTS: Denoising and enhancing experiments show that 4D-NLM method has better denoising effect than several classical and state-of-the-art methods such as NLM and WNNM. Similarly, ACEHP method can keep noise level low while enhancing myocardial regions better than several classical and state-of-the-art methods such as CLAHE and SVDDWT. Furthermore, in the volume rendering after the combined "4D-NLM+ACEHP" processing, the cardiac lumen is clear and the boundary is neat. The Entropy value that can be achieved by our method framework (4D-NLM+ACEHP) is 4.84. CONCLUSIONS: Our new framework can thus provide important improvements to clinical fetal heart ultrasound images.

17.
Biomech Model Mechanobiol ; 20(4): 1337-1351, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33774755

RESUMO

Left atrial ligation (LAL) of the chick embryonic heart at HH21 is a model of the hypoplastic left heart syndrome (HLHS) disease, demonstrating morphological and hemodynamic features similar to human HLHS cases. Since it relies on mechanical intervention without genetic or pharmacological manipulations, it is a good model for understanding the biomechanics origins of such HLHS malformations. To date, however, the fluid mechanical environment of this model is poorly understood. In the current study, we performed 4D ultrasound imaging of LAL and normal chick embryonic hearts and 4D cardiac flow simulations to help shed light on the mechanical environment that may lead to the HLHS morphology. Results showed that the HH25 LAL atrial function was compromised, and velocities in the ventricle were reduced. The HH25 LAL ventricles developed a more triangular shape with a sharper apex, and in some cases, the atrioventricular junction shifted medially. These changes led to more sluggish flow near the ventricular free wall and apex, where more fluid particles moved in an oscillatory manner with the motion of the ventricular wall, while slowly being washed out, resulting in lower wall shear stresses and higher oscillatory indices. Consequent to these flow conditions, at HH28, even before septation is complete, the left ventricle was found to be hypoplastic while the right ventricle was found to be larger in compensation. Our results suggest that the low and oscillatory flow near the left side of the heart may play a role in causing the HLHS morphology in the LAL model.


Assuntos
Átrios do Coração/fisiopatologia , Ventrículos do Coração/fisiopatologia , Síndrome do Coração Esquerdo Hipoplásico/fisiopatologia , Animais , Embrião de Galinha , Simulação por Computador , Modelos Animais de Doenças , Endocárdio/patologia , Hemodinâmica , Humanos , Processamento de Imagem Assistida por Computador , Modelos Cardiovasculares , Movimento (Física) , Oscilometria , Estresse Mecânico
18.
Ann Biomed Eng ; 49(5): 1364-1379, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33175989

RESUMO

Critical aortic stenosis (AS) of the fetal heart causes a drastic change in the cardiac biomechanical environment. Consequently, a substantial proportion of such cases will lead to a single-ventricular birth outcome. However, the biomechanics of the disease is not well understood. To address this, we performed Finite Element (FE) modelling of the healthy fetal left ventricle (LV) based on patient-specific 4D ultrasound imaging, and simulated various disease features observed in clinical fetal AS to understand their biomechanical impact. These features included aortic stenosis, mitral regurgitation (MR) and LV hypertrophy, reduced contractility, and increased myocardial stiffness. AS was found to elevate LV pressures and myocardial stresses, and depending on severity, can drastically decrease stroke volume and myocardial strains. These effects are moderated by MR. AS alone did not lead to MR velocities above 3 m/s unless LV hypertrophy was included, suggesting that hypertrophy may be involved in clinical cases with high MR velocities. LV hypertrophy substantially elevated LV pressure, valve flow velocities and stroke volume, while reducing LV contractility resulted in diminished LV pressure, stroke volume and wall strains. Typical extent of hypertrophy during fetal AS in the clinic, however, led to excessive LV pressure and valve velocity in the FE model, suggesting that reduced contractility is typically associated with hypertrophy. Increased LV passive stiffness, which might represent fibroelastosis, was found to have minimal impact on LV pressures, stroke volume, and wall strain. This suggested that fibroelastosis could be a by-product of the disease progression and does not significantly impede cardiac function. Our study demonstrates that FE modelling is a valuable tool for elucidating the biomechanics of congenital heart disease and can calculate parameters which are difficult to measure, such as intraventricular pressure and myocardial stresses.


Assuntos
Estenose da Valva Aórtica/fisiopatologia , Coração Fetal/fisiopatologia , Modelos Cardiovasculares , Estenose da Valva Aórtica/diagnóstico por imagem , Fenômenos Biomecânicos , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Coração Fetal/diagnóstico por imagem , Análise de Elementos Finitos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Ultrassonografia , Função Ventricular Esquerda
19.
Sci Rep ; 10(1): 18510, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116206

RESUMO

Accurate cardiac motion estimation from medical images such as ultrasound is important for clinical evaluation. We present a novel regularisation layer for cardiac motion estimation that will be applied after image registration and demonstrate its effectiveness. The regularisation utilises a spatio-temporal model of motion, b-splines of Fourier, to fit to displacement fields from pairwise image registration. In the process, it enforces spatial and temporal smoothness and consistency, cyclic nature of cardiac motion, and better adherence to the stroke volume of the heart. Flexibility is further given for inclusion of any set of registration displacement fields. The approach gave high accuracy. When applied to human adult Ultrasound data from a Cardiac Motion Analysis Challenge (CMAC), the proposed method is found to have 10% lower tracking error over CMAC participants. Satisfactory cardiac motion estimation is also demonstrated on other data sets, including human fetal echocardiography, chick embryonic heart ultrasound images, and zebrafish embryonic microscope images, with the average Dice coefficient between estimation motion and manual segmentation at 0.82-0.87. The approach of performing regularisation as an add-on layer after the completion of image registration is thus a viable option for cardiac motion estimation that can still have good accuracy. Since motion estimation algorithms are complex, dividing up regularisation and registration can simplify the process and provide flexibility. Further, owing to a large variety of existing registration algorithms, such an approach that is usable on any algorithm may be useful.


Assuntos
Ecocardiografia/métodos , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Artefatos , Inteligência Artificial , Embrião de Galinha , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Movimento (Física) , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração , Peixe-Zebra
20.
Micromachines (Basel) ; 11(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610583

RESUMO

Micromixers are critical components in the lab-on-a-chip or micro total analysis systems technology found in micro-electro-mechanical systems. In general, the mixing performance of the micromixers is determined by characterising the mixing time of a system, for example the time or number of circulations and vibrations guided by tracers (i.e., fluorescent dyes). Our previous study showed that the mixing performance could be detected solely from the electrical measurement. In this paper, we employ electromagnetic micromixers to investigate the correlation between electrical and mechanical behaviours in the mixer system. This work contemplates the "anti-reciprocity" concept by providing a theoretical insight into the measurement of the mixer system; the work explains the data interdependence between the electrical point impedance (voltage per unit current) and the mechanical velocity. This study puts the electromagnetic micromixer theory on a firm theoretical and empirical basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...