Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Physiol Rep ; 2(2): e00237, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24744906

RESUMO

Mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) show superior proliferative capacity and therapeutic potential than those derived from bone marrow (BM). Ectopic expression of myocardin further improved the therapeutic potential of BM-MSCs in a mouse model of myocardial infarction. The aim was of this study was to assess whether forced myocardin expression in iPSC-MSCs could further enhance their transdifferentiation to cardiomyocytes and improve their electrophysiological properties for cardiac regeneration. Myocardin was overexpressed in iPSC-MSCs using viral vectors (adenovirus or lentivirus). The expression of smooth muscle cell and cardiomyocyte markers, and ion channel genes was examined by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and patch clamp. The conduction velocity of the neonatal rat ventricular cardiomyocytes cocultured with iPSC-MSC monolayer was measured by multielectrode arrays recording plate. Myocardin induced the expression of α-MHC, GATA4, α-actinin, cardiac MHC, MYH11, calponin, and SM α-actin, but not cTnT, ß-MHC, and MLC2v in iPSC-MSCs. Overexpression of myocardin in iPSC-MSC enhanced the expression of SCN9A and CACNA1C, but reduced that of KCa3.1 and Kir2.2 in iPSC-MSCs. Moreover, BKCa, IKir, ICl, Ito and INa.TTX were detected in iPSC-MSC with myocardin overexpression; while only BKCa, IKir, ICl, IKDR, and IKCa were noted in iPSC-MSC transfected with green florescence protein. Furthermore, the conduction velocity of iPSC-MSC was significantly increased after myocardin overexpression. Overexpression of myocardin in iPSC-MSCs resulted in partial transdifferentiation into cardiomyocytes phenotype and improved the electrical conduction during integration with mature cardiomyocytes.

2.
J Cardiovasc Transl Res ; 6(6): 989-99, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24081385

RESUMO

While human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes, their immature phenotypes limit their therapeutic application for myocardial regeneration. We sought to determine whether electrical stimulation could enhance the differentiation and maturation of hESC-derived cardiomyocytes. Cardiac differentiation was induced in a HES3 hESC line via embryoid bodies formation treated with a p38 MAP kinase inhibitor. Detailed molecular and functional analysis were performed in those hESC-derived cardiomyocytes cultured for 4 days in the absence or presence of electrical field stimulation (6.6 V/cm, 1 Hz, and 2 ms pulses) using an eight-channel C-Pace stimulator (Ion-Optics Co., MA). Upon electrical stimulation, quantitative polymerase chain reaction demonstrated significant upregulation of cardiac-specific gene expression including HCN1, MLC2V, SCN5A, SERCA, Kv4.3, and GATA4; immunostaining and flow cytometry analysis revealed cellular elongation and an increased proportion of troponin-T positive cells (6.3 ± 1.2% vs. 15.8 ± 2.1%; n = 3, P < 0.01). Electrophysiological studies showed an increase in the proportion of ventricular-like hESC-derived cardiomyocytes (48 vs. 29%, P < 0.05) with lengthening of their action potential duration at 90% repolarization (387.7 ± 35.35; n = 11 vs. 291.8 ± 20.82; n = 10, P < 0.05) and 50% repolarization (313.9 ± 27.94; n = 11 vs. 234.0 ± 16.10; n = 10, P < 0.05) after electrical stimulation. Nonetheless, the membrane diastolic potentials and action potential upstrokes of different hESC-derived cardiomyocyte phenotypes, and the overall beating rate remained unchanged (all P > 0.05). Fluorescence confocal imaging revealed that electrical stimulation significantly increased both spontaneous and caffeine-induced calcium flux in the hESC-derived cardiomyocytes (approximately 1.6-fold for both cases; P < 0.01). In conclusion, electrical field stimulation increased the expression of cardiac-specific genes and the yield of differentiation, promoted ventricular-like phenotypes, and improved the calcium handling of hESC-derived cardiomyocytes.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Miócitos Cardíacos/fisiologia , Sinalização do Cálcio , Linhagem Celular , Linhagem da Célula , Estimulação Elétrica , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Potenciais da Membrana , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
World J Stem Cells ; 5(3): 86-97, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23904910

RESUMO

AIM: To development of an improved p38 MAPK inhibitor-based serum-free medium for embryoid body cardiomyocyte differentiation of human pluripotent stem cells. METHODS: Human embryonic stem cells (hESC) differentiated to cardiomyocytes (CM) using a p38 MAPK inhibitor (SB203580) based serum-free medium (SB media). Nutrient supplements known to increase cell viability were added to SB medium. The ability of these supplements to improve cardiomyogenesis was evaluated by measurements of cell viability, total cell count, and the expression of cardiac markers via flow cytometry. An improved medium containing Soy hydrolysate (HySoy) and bovine serum albumin (BSA) (SupSB media) was developed and tested on 2 additional cell lines (H1 and Siu-hiPSC). Characterization of the cardiomyocytes was done by immunohistochemistry, electrophysiology and quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: hESC cell line, HES-3, differentiating in SB medium for 16 d resulted in a cardiomyocyte yield of 0.07 ± 0.03 CM/hESC. A new medium (SupSB media) was developed with the addition of HySoy and BSA to SB medium. This medium resulted in 2.6 fold increase in cardiomyocyte yield (0.21 ± 0.08 CM/hESC). The robustness of SupSB medium was further demonstrated using two additional pluripotent cell lines (H1, hESC and Siu1, hiPSC), showing a 15 and 9 fold increase in cardiomyocyte yield respectively. The age (passage number) of the pluripotent cells did not affect the cardiomyocyte yields. Embryoid body (EB) cardiomyocytes formed in SupSB medium expressed canonical cardiac markers (sarcomeric α-actinin, myosin heavy chain and troponin-T) and demonstrated all three major phenotypes: nodal-, atrial- and ventricular-like. Electrophysiological characteristics (maximum diastolic potentials and action potential durations) of cardiomyocytes derived from SB and SupSB media were similar. CONCLUSION: The nutrient supplementation (HySoy and BSA) leads to increase in cell viability, cell yield and cardiac marker expression during cardiomyocyte differentiation, translating to an overall increase in cardiomyocyte yield.

4.
PLoS One ; 8(3): e57876, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23472116

RESUMO

Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC), human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC), and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (P>0.05). While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05), the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05). Compared with medium, transplanting BM-EC (n = 6), HUVEC (n = 6), hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as "off-the-shelf" format for the treatment of tissue ischemia.


Assuntos
Células Endoteliais/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Isquemia/patologia , Isquemia/terapia , Transplante de Células-Tronco , Idoso , Proteínas Angiogênicas/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Hipóxia Celular , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Células Endoteliais/citologia , Membro Posterior/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Fisiológica , Perfusão , Fatores de Tempo
5.
Hum Mol Genet ; 22(7): 1395-403, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23300193

RESUMO

In this paper, we report a novel heterozygous mutation of A285V codon conversion on exon 4 of the desmin (DES), using whole exome sequencing (WES) in an isolated proband with documented dilated cardiomyopathy (DCM). This mutation is predicted to cause three-dimensional structure changes of DES. Immunohistological and electron microscopy studies demonstrated diffuse abnormal DES aggregations in DCM-induced-pluripotent stem cell (iPSC)-derived cardiomyocytes, and control-iPSC-derived cardiomyocytes transduced with A285V-DES. DCM-iPSC-derived cardiomyocytes also exhibited functional abnormalities in vitro. This is the first demonstration that patient-specific iPSC-derived cardiomyocytes can be used to provide histological and functional confirmation of a suspected genetic basis for DCM identified by WES.


Assuntos
Cardiomiopatia Dilatada/genética , Desmina/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/metabolismo , Adulto , Sequência de Aminoácidos , Sequência de Bases , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/fisiopatologia , Diferenciação Celular , Desmina/química , Desmina/metabolismo , Exoma , Éxons , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Análise de Sequência de DNA , Volume Sistólico/genética , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
6.
Heart Rhythm ; 10(2): 273-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23041574

RESUMO

BACKGROUND: Cellular replacement strategies using embryonic stem cell-derived cardiomyocytes (ESC-CMs) have been shown to improve left ventricular (LV) ejection fraction and prevent LV remodeling post-myocardial infarction (MI). Nonetheless, the immature electrical phenotypes of ESC-CMs may increase the risk of ventricular tachyarrhythmias (VTs) and sudden death. OBJECTIVE: To investigate whether the forced expression of Kir2.1-encoded inward rectifying K(+) channels that are otherwise absent in ESC-CMs would attenuate their proarrhythmic risk after transplantation post-MI. METHODS: Mouse ESC line stably transduced with a lentivirus (LentV)-based doxycycline (DOX)-inducible system coexpressing the transgenes Kir2.1 and a dsRed (LentV-THM-Kir2.1-GFP/LentV-TR-KRAB-dsRed) was differentiated into ESC-CMs with (DOX(+)) or without (DOX(-)) treatment with DOX. Detailed in vitro and in vivo assessments of LV function and cardiac electrophysiology were measured 4 weeks after transplantation. RESULTS: ESC-CM DOX(+) with atrial and ventricular phenotype exhibited more hyperpolarizing resting membrane potential than did ESC-CM DOX(-) (P< .05). Transplantations of ESC-CM DOX(-) and ESC-CM DOX(+) both significantly improved LV ejection fraction, LV end-systolic diameter, end-systolic pressure-volume relationship, and positive maximal and negative pressure derivative (P< .05) at 4 weeks compared with the MI group; however, the DOX(-) group (22 of 40, 55%) had a significantly higher early sudden death rate than the DOX(+) group (13 of 40, 32.5%; P = .036). Telemetry monitoring revealed that the DOX(-) group (6.09%±3.65%) had significantly more episodes of spontaneous VT compared with the DOX(+) group (0.92%±0.81%; P< .05). In vivo programmed electrical stimulation at 2 weeks resulted in a significantly higher incidence of inducible VT in the DOX(-) group (9 of 16, 56.25%) compared with the DOX(+) group (3 of 16, 18.75%; P = .031). CONCLUSIONS: Forced expression of Kir2.1 in ESC-CMs improves their electrical phenotypes and lowers the risk of inducible and spontaneous VT after post-MI transplantation.


Assuntos
Células-Tronco Embrionárias/transplante , Transplante de Coração/efeitos adversos , Infarto do Miocárdio/terapia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Taquicardia Ventricular/terapia , Remodelação Ventricular/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Doxiciclina/farmacologia , Eletrocardiografia/métodos , Regulação da Expressão Gênica , Transplante de Coração/métodos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos , Infarto do Miocárdio/diagnóstico , Miócitos Cardíacos/metabolismo , Fenótipo , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/terapia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Medição de Risco , Sensibilidade e Especificidade , Taquicardia Ventricular/etiologia
7.
Am J Physiol Cell Physiol ; 303(2): C115-25, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357737

RESUMO

The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K(+), Na(+), Ca(2+), and Cl(-) was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca(2+)-activated K(+) current (BK(Ca)), delayed rectifier K(+) current (IK(DR)), inwardly rectifying K(+) current (I(Kir)), Ca(2+)-activated K(+) current (IK(Ca)), and chloride current (I(Cl))] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BK(Ca), IK(DR), I(Kir), and IK(Ca)) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IK(DR) with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.


Assuntos
Proliferação de Células , Canais de Potássio Éter-A-Go-Go/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Corantes , Humanos , Potenciais da Membrana , Sais de Tetrazólio , Tiazóis
8.
Hum Mol Genet ; 21(1): 32-45, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21949351

RESUMO

Many human diseases share a developmental origin that manifests during childhood or maturity. Aneuploid syndromes are caused by supernumerary or reduced number of chromosomes and represent an extreme example of developmental disease, as they have devastating consequences before and after birth. Investigating how alterations in gene dosage drive these conditions is relevant because it might help treat some clinical aspects. It may also provide explanations as to how quantitative differences in gene expression determine phenotypic diversity and disease susceptibility among natural populations. Here, we aimed to produce induced pluripotent stem cell (iPSC) lines that can be used to improve our understanding of aneuploid syndromes. We have generated iPSCs from monosomy X [Turner syndrome (TS)], trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome) and partial trisomy 11;22 (Emanuel syndrome), using either skin fibroblasts from affected individuals or amniocytes from antenatal diagnostic tests. These cell lines stably maintain the karyotype of the donors and behave like embryonic stem cells in all tested assays. TS iPSCs were used for further studies including global gene expression analysis and tissue-specific directed differentiation. Multiple clones displayed lower levels of the pseudoautosomal genes ASMTL and PPP2R3B than the controls. Moreover, they could be transformed into neural-like, hepatocyte-like and heart-like cells, but displayed insufficient up-regulation of the pseudoautosomal placental gene CSF2RA during embryoid body formation. These data support that abnormal organogenesis and early lethality in TS are not caused by a tissue-specific differentiation blockade, but rather involves other abnormalities including impaired placentation.


Assuntos
Aneuploidia , Transtornos Cromossômicos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Células Cultivadas , Transtornos Cromossômicos/metabolismo , Transtornos Cromossômicos/fisiopatologia , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Modelos Genéticos
9.
Pharmacol Res ; 65(2): 182-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22005391

RESUMO

Although vascular effects of selective estrogen receptor modulators (SERMs) have been extensively examined in conduit arteries, whether SERMs could favorably modulate myogenic response in resistance arteries is unknown. The impact of raloxifene therapy and cholesterol diet on myogenic constriction during estrogen deficiency is unresolved. This study investigated changes in vascular reactivity and myogenic responses in female ovariectomized (Ovx) hamsters fed high-cholesterol diet (HCD) with and without chronic treatment of raloxifene. Functional studies were performed on hamster septal coronary arteries cannulated in a pressure myograph. Acetylcholine (ACh)-induced dilatation was reduced in arteries from cholesterol-fed Ovx hamsters, but not in those from cholesterol-fed hamsters, while pressure-induced myogenic constriction was unaffected. Chronic treatment with raloxifene restored ACh-induced dilatation in cholesterol-fed Ovx hamsters. U46619-induced constriction was increased in arteries from cholesterol-fed Ovx hamsters but not from cholesterol-fed control hamsters, which was normalized by chronic raloxifene treatment. The pressure-diameter relationship is presented as normalized diameter versus intraluminal pressure, while the effect of ACh or U46619 is expressed as percentage of tone at 80 mm Hg. Two-way analysis of variance (ANOVA) followed by Bonferroni post-tests were used for statistical evaluation among different treatment groups. P<0.05 was taken as statistically significant. The present results show that chronic treatment with raloxifene could benefit myogenically active coronary arteries by (i) restoring ACh-induced dilatation and (ii) reducing U46619-induced constriction without affecting pressure-induced myogenic responses in cholesterol-fed hamsters during estrogen deficiency. If such benefit can be observed in humans, raloxifene and other SERMs may be useful to preserve endothelial function and curtail vascular hypersensitivity in resistance coronary arteries in post-menopausal women with hypercholesterolemia or hyperlipidemia, a lipid condition implicated in the pathogenesis of myocardial infarction.


Assuntos
Colesterol na Dieta/administração & dosagem , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Acetilcolina/farmacologia , Animais , Colesterol na Dieta/sangue , Colesterol na Dieta/toxicidade , LDL-Colesterol/sangue , Cricetinae , Endotélio Vascular/fisiologia , Feminino , Lipase/sangue , Mesocricetus , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Ovariectomia/métodos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
10.
Aging (Albany NY) ; 4(11): 803-822, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23362510

RESUMO

AIMS: We identified an autosomal dominant non­sense mutation (R225X) in exon 4 of the lamin A/C (LMNA) gene in a Chinese family spanning 3 generations with familial dilated cardiomyopathy (DCM). In present study, we aim to generate induced pluripotent stem cells derived cardiomyocytes (iPSC­CMs) from an affected patient with R225X and another patient bearing LMNA frame­shift mutation for drug screening. METHODS AND RESULTS: Higher prevalence of nuclear bleb formation and micronucleation was present in LMNA(R225X/WT) and LMNA(Framshift/WT) iPSC­CMs. Under field electrical stimulation, percentage of LMNA­mutated iPSC­CMs exhibiting nuclear senescence and cellular apoptosis markedly increased. shRNA knockdown of LMNA replicated those phenotypes of the mutated LMNA field electrical stress. Pharmacological blockade of ERK1/2 pathway with MEK1/2 inhibitors, U0126 and selumetinib (AZD6244) significantly attenuated the pro­apoptotic effects of field electric stimulation on the mutated LMNA iPSC­CMs. CONCLUSION: LMNA­related DCM was modeled in­vitro using patient­specific iPSC­CMs. Our results demonstrated that haploinsufficiency due to R225X LMNA non­sense mutation was associated with accelerated nuclear senescence and apoptosis of iPSC­ CMs under electrical stimulation, which can be significantly attenuated by therapeutic blockade of stress­related ERK1/2 pathway.


Assuntos
Envelhecimento/fisiologia , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas/citologia , Lamina Tipo A/genética , Modelos Biológicos , Miócitos Cardíacos/citologia , Western Blotting , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Diferenciação Celular/fisiologia , Feminino , Fibroblastos/citologia , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Linhagem
11.
Cell Reprogram ; 13(6): 527-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22029419

RESUMO

Our previous study demonstrated the direct involvement of the HIF-1α subunit in the promotion of cardiac differentiation of murine embryonic stem cells (ESCs). We report the use of cobalt chloride to induce HIF-1α stabilization in human ESCs to promote cardiac differentiation. Treatment of undifferentiated hES2 human ESCs with 50 µM cobalt chloride markedly increased protein levels of the HIF-1α subunit, and was associated with increased expression of early cardiac specific transcription factors and cardiotrophic factors including NK2.5, vascular endothelial growth factor, and cardiotrophin-1. When pretreated cells were subjected to cardiac differentiation, a notable increase in the occurrence of beating embryoid bodies and sarcomeric actinin-positive cells was observed, along with increased expression of the cardiac-specific markers, MHC-A, MHC-B, and MLC2V. Electrophysiological study revealed increased atrial- and nodal-like cells in the cobalt chloride-pretreated group. Confocal calcium imaging analysis indicated that the maximum upstroke and decay velocities were significantly increased in both noncaffeine and caffeine-induced calcium transient in cardiomyocytes derived from the cobalt chloride-pretreated cells, suggesting these cells were functionally more mature. In conclusion, our study demonstrated that cobalt chloride pretreatment of hES2 human ESCs promotes cardiac differentiation and the maturation of calcium homeostasis of cardiomyocytes derived from ESCs.


Assuntos
Antimutagênicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cobalto/farmacologia , Células-Tronco Embrionárias/metabolismo , Miocárdio/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Cálcio/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/citologia , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Miocárdio/citologia , Especificidade de Órgãos/efeitos dos fármacos
12.
J Am Soc Nephrol ; 22(7): 1221-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21636641

RESUMO

Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells, termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs, and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here, we present a simple, reproducible, noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols, and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Túbulos Renais/citologia , Urina/citologia , Idoso , Feminino , Técnicas de Transferência de Genes , Humanos , Masculino , Adulto Jovem
13.
Stem Cell Rev Rep ; 7(4): 976-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21614516

RESUMO

RATIONALE: Cardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling. OBJECTIVE: We investigated the calcium handling properties of hiPSC-derived cardiomyocytes and compared with those from human embryonic stem cells (hESCs). METHODS AND RESULTS: We differentiated cardiomyocytes from hiPSCs (IMR90 and KS1) and hESCs (H7 and HES3) with established protocols. Beating outgrowths from embryoid bodies were typically observed 2 weeks after induction. Cells in these outgrowths were stained positively for tropomyosin and sarcomeric alpha-actinin. Reverse-transcription polymerase chain reaction studies demonstrated the expressions of cardiac-specific markers in both hiPSC- and hESC-derived cardiomyocytes. Calcium handling properties of 20-day-old hiPSC- and hESC-derived cardiomyocytes were investigated using fluorescence confocal microscopy. Compared with hESC-derived cardiomyocytes, spontaneous calcium transients from both lines of hiPSC-derived cardiomyocytes were of significantly smaller amplitude and with slower maximal upstroke velocity. Better caffeine-induced calcium handling kinetics in hESC-CMs indicates a higher sacroplasmic recticulum calcium store. Furthermore, in contrast with hESC-derived cardiomyocytes, ryanodine did not reduce the amplitudes, maximal upstroke and decay velocity of calcium transients of hiPSC-derived cardiomyocytes. In addition, spatial inhomogeneity in temporal properties of calcium transients across the width of cardiomyocytes was more pronounced in hiPSC-derived cardiomyocytes than their hESC counterpart as revealed line-scan calcium imaging. Expressions of the key calcium-handling proteins including ryanodine recptor-2 (RyR2), sacroplasmic recticulum calcium-ATPase (SERCA), junction (Jun) and triadin (TRDN), were significantly lower in hiPSC than in hESCs. CONCLUSIONS: The results indicate the calcium handling properties of hiPSC-derived cardiomyocytes are relatively immature to hESC counterparts.


Assuntos
Cálcio/metabolismo , Células-Tronco Embrionárias/metabolismo , Homeostase , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Cafeína/farmacologia , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Humanos , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo
14.
PLoS One ; 6(5): e19787, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21589943

RESUMO

The cardioprotective effects of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA-I) are well documented, but their effects in the direction of the cardiac differentiation of embryonic stem cells are unknown. We evaluated the effects of exogenous apoA-I expression on cardiac differentiation of ESCs and maturation of ESC-derived cardiomyocytes. We stably over-expressed full-length human apoA-I cDNA with lentivirus (LV)-mediated gene transfer in undifferentiated mouse ESCs and human induced pluripotent stem cells. Upon cardiac differentiation, we observed a significantly higher percentage of beating embryoid bodies, an increased number of cardiomyocytes as determined by flow cytometry, and expression of cardiac markers including α-myosin heavy chain, ß-myosin heavy chain and myosin light chain 2 ventricular transcripts in LV-apoA-I transduced ESCs compared with control (LV-GFP). In the presence of noggin, a BMP4 antagonist, activation of BMP4-SMAD signaling cascade in apoA-I transduced ESCs completely abolished the apoA-I stimulated cardiac differentiation. Furthermore, co-application of recombinant apoA-I and BMP4 synergistically increased the percentage of beating EBs derived from untransduced D3 ESCs. These together suggests that that pro-cardiogenic apoA-I is mediated via the BMP4-SMAD signaling pathway. Functionally, cardiomyocytes derived from the apoA-I-transduced cells exhibited improved calcium handling properties in both non-caffeine and caffeine-induced calcium transient, suggesting that apoA-I plays a role in enhancing cardiac maturation. This increased cardiac differentiation and maturation has also been observed in human iPSCs, providing further evidence of the beneficial effects of apoA-I in promoting cardiac differentiation. In Conclusion, we present novel experimental evidence that apoA-I enhances cardiac differentiation of ESCs and iPSCs and promotes maturation of the calcium handling property of ESC-derived cardiomyocytes via the BMP4/SMAD signaling pathway.


Assuntos
Apolipoproteína A-I/metabolismo , Diferenciação Celular , Miocárdio/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Cálcio/metabolismo , Citometria de Fluxo , Homeostase , Humanos , Camundongos , Miocárdio/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo
15.
Aging (Albany NY) ; 3(4): 380-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21483033

RESUMO

The term laminopathies defines a group of genetic disorders caused by defects in the nuclear envelope, mostly the lamins. Lamins are the main constituents of the nuclear lamina, a filamentous meshwork associated with the inner nuclear membrane that provides mechanical stability and plays important roles in processes such as transcription, DNA replication and chromatin organization. More than 300 mutations inlamin A/C have been associated with diverse clinical phenotypes, understanding the molecular basis of these diseases may provide a rationale for treating them. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a patient with inherited dilated cardiomiopathy and 2 patients with distinct accelerated forms of aging, atypical Werner syndrome and Hutchinson Gilford progeria, all of which are caused by mutations in lamin A/C. These cell lines were pluripotent and displayed normal nuclear membrane morphology compared to donor fibroblasts. Their differentiated progeny reproduced the disease phenotype, reinforcing the idea that they represent excellent tools for understanding the role of lamin A/C in normal physiology and the clinical diversity associated with these diseases.


Assuntos
Cardiomiopatia Dilatada/genética , Linhagem Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Lamina Tipo A/genética , Progéria/genética , Síndrome de Werner/genética , Animais , Senescência Celular , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Mutação , Lâmina Nuclear/ultraestrutura
16.
Cell Reprogram ; 12(6): 641-53, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20858051

RESUMO

Human-induced pluripotent stem cells (iPSCs) generated from human adult somatic cells through reprogramming hold great promises for future regenerative medicine. However, exposure of human iPSCs to animal feeder and serum in the process of their generation and maintenance imposes risk of transmitting animal pathogens to human subjects, thus hindering the potential therapeutic applications. Here, we report the successful generation of human iPSCs in a feeder-independent culture system with defined factors. Two stable human iPSC lines were established from primary human dermal fibroblasts of two healthy volunteers. These human iPSCs expressed a panel of pluripotency markers including stage-specific embryonic antigen (SSEA)-4, tumor-rejection antigen (TRA)-1-60, TRA-1-81, and alkaline phosphatase, while maintaining normal karyotypes and the exogenous reprogramming factors being silenced. In addition, these human iPSCs can differentiate along lineages representative of the three embryonic germ layers upon formation of embryoid bodies, indicating their pluripotency. Furthermore, subcutaneous transplantation of these cells into immunodeficient mice resulted in teratoma formation in 6 to 8 weeks. Our findings are an important step toward generating patient-specific iPSCs in a more clinically compliant manner by eliminating the need of animal feeder cells and animal serum.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura Livres de Soro , Células-Tronco Pluripotentes Induzidas/fisiologia , Quinases Associadas a rho/antagonistas & inibidores , Adulto , Animais , Diferenciação Celular , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cariotipagem , Camundongos
17.
Heart Rhythm ; 7(12): 1852-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20833268

RESUMO

BACKGROUND: Cellular replacement strategies using embryonic stem cells (ESCs) and their cardiac derivatives are emerging as novel experimental therapeutic paradigms for the treatment of post-myocardial infarction (MI) left ventricular (LV) dysfunction; however, their potential proarrhythmic risk remains unclear. OBJECTIVE: The purpose of this study was to investigate the functional effect and proarrhythmic risk of ESC transplantation in a mouse model of MI. METHODS: We compared the functional effects and proarrhythmic risk of direct intramyocardial transplantation of 3 × 10(5) undifferentiated mouse ESCs (MI+ESC group, n = 33) and mouse ESC-derived cardiomyocytes (MI+ESC-CM group, n = 40) versus culture medium (MI group, n = 33) at the infarct border zone in a mouse model of acute MI. LV performance was assessed with serial cardiac magnetic resonance imaging (MRI) at 1 and 3 week(s) post-MI, and invasive LV pressure measurement was assessed (dP/dt) at 4 weeks before sacrifice for histological examination. Furthermore, electrophysiological study was also performed in another set of animals in each group (n = 24) to assess for proarrhythmias after transplantation. RESULTS: In vitro cellular electrophysiological study demonstrated that ESC-CMs exhibit arrhythmogenesis including automaticity, lengthened action potential duration, and depolarized resting membrane potential. At 4 weeks, the MI+ESC-CM group (21/40, 53%) had a higher mortality rate compared with those in the MI group (10/33, 30%, P = .08) and in the MI+ESC group (7/33, 21%, P = .012). Electrophysiological study showed a significantly higher incidence of inducible ventricular tachyarrhythmias in the MI+ESC-CM group (13/24, 54%) compared with in the MI group (6/24, 21%, P = .039) and in the MI+ESC group (5/24, 21%, P = .017). Cardiac MRI showed similar improvement in LV ejection fraction in the MI+ESC and MI+ESC-CM groups compared with in the MI group at 1 week (27.5% ± 3.8%; 30.3% ± 5.2% vs. 12.4% ± 1.4%; P < .05) and 3 weeks (29.8% ± 3.9%; 27.0% ± 4.8% vs. 10.6% ± 2.8%; P < .05) post-MI, respectively. Furthermore, invasive hemodynamic assessment at 4 weeks showed significant similar improvement in LV +dP/dt in the MI+ESC (2,644 ± 391 mmHg/s, P < .05) and MI+ESC-CM groups (2,539 ± 389 mmHg/s; P < .05) compared with in the MI group (2,042 ± 406 mmHg/s). CONCLUSIONS: Our results demonstrate that transplantation of undifferentiated ESCs and ESC-CMs provides similar improvement in cardiac function post-MI. However, transplantation of ESC-CMs is associated with a significantly higher prevalence of inducible ventricular tachyarrhythmias and early mortality than transplantations with ESCs.


Assuntos
Arritmias Cardíacas/etiologia , Células-Tronco Embrionárias/transplante , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/efeitos adversos , Animais , Diferenciação Celular , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Imagem Cinética por Ressonância Magnética , Camundongos , Infarto do Miocárdio/complicações , Disfunção Ventricular Esquerda/cirurgia , Pressão Ventricular
18.
Mol Endocrinol ; 24(9): 1728-36, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20667986

RESUMO

Embryonic stem cells (ESCs) can differentiate into functional cardiomyocytes and thus represent a promising cell source for cardiac regenerative therapy. Nevertheless, the therapeutic application of ESC-derived cardiomyocytes is limited by the low efficacy of the current protocol for cardiac differentiation and their immature phenotypes. Although thyroid hormone is essential for normal cardiac development and function, its role in the cardiac differentiation of ESCs, as well as the maturation of ESC-derived cardiomyocytes, remains unclear. In this study, we examined the cardiac differentiation of murine ESCs in the presence of T(3) for 7 d using flow cytometry, RT-PCR, cellular electrophysiology study, and confocal calcium imaging. Compared with control conditions, T(3) supplementation increased the number of ESC-derived cardiomyocytes and was accompanied by up-regulation of a panel of cardiac markers, including Nkx2.5, myosin light chain-2V, as well as alpha- and beta-myosin heavy chain. More importantly, electrophysiological study revealed that ESC-derived cardiomyocytes exhibited more adult-like phenotypes after T(3) supplementation based on action potential characteristics. They also exhibited more adult-like calcium homeostasis properties. These phenotypic changes were associated with up-regulation of sarco(endo)plasmic reticulum calcium ATPase-2a and ryanodine receptor-2 expression. In addition, the classical (genomic) pathway was shown to be involved in T(3)-induced cardiac differentiation of ESCs. Our results show that T(3) supplementation promotes cardiac differentiation of ESCs and enhances maturation of electrophysiological, as well as calcium homeostasis, properties of ESC-derived cardiomyocytes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Genoma/genética , Miocárdio/citologia , Transdução de Sinais/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Miocárdio/metabolismo , Transdução de Sinais/genética
19.
Europace ; 12(8): 1178-87, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20472688

RESUMO

AIMS: A better understanding of the ionic mechanisms for cardiac automaticity can lead to better strategies for engineering bio-artificial pacemakers. Here, we attempted to better define the relative contribution of I(f) and I(K1) in the generation of spontaneous action potentials (SAPs) in cardiomyocytes (CMs). METHODS AND RESULTS: Monolayers of neonatal rat ventricular myocytes (NRVMs) were transduced with a recombinant adenovirus (Ad) to express a gating-engineered HCN1 construct (HCN1-DeltaDeltaDelta) for patch-clamp and multielectrode array (MEA) recordings. Single NRVMs exhibited a bi-phasic response in the generation of SAPs (62.6 +/- 17.4 b.p.m., Days 1-2; 194.3 +/- 12.3 b.p.m., Days 3-4; 73% quiescent, Days 9-10). Although automaticity time-dependently decreased and subsequently ceased, I(f) remained fairly stable (-5.2 +/- 1.1 pA/pF, Days 1-2; -5.1 +/- 1.4 pA/pF, Days 7-8; -4.3 +/- 1.3 pA/pF, Days 13-14). In contrast, I(K1) declined rapidly (from -16.9 +/- 2.7 pA/pF on Days 1-2 to -4.4 +/- 1.6 pA/pF on Days 5-6). Maximum diastolic potential/resting membrane potential (r = 0.89) and action potential duration at 50% (APD(50), r = 0.73) and 90% (APD(90), r = 0.75) but not the firing rate (r = -0.3) were positively correlated to the I(K1). Similarly, monolayer NRVMs ceased to spontaneously fire after long-term culture. Ad-HCN1-DeltaDeltaDelta transduction restored pacing in silenced individual and monolayer NRVMs but with reduced conduction velocity and field potential amplitude. CONCLUSION: We conclude that the combination of I(K1) and I(f) primes CMs for bio-artificial pacing by determining the threshold. However, I(f) functions as a membrane potential oscillator to determine the basal firing frequency. Future engineering of automaticity in the multicellular setting needs to have conduction taken into consideration.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Ventrículos do Coração/citologia , Miócitos Cardíacos/fisiologia , Marca-Passo Artificial , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células/métodos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Canais de Potássio/genética , Ratos , Ratos Wistar , Transdução Genética
20.
J Mol Cell Cardiol ; 48(6): 1129-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20116384

RESUMO

Hypoxia plays an important role in the proliferation, differentiation and maintenance of the cardiovascular system during development. While low oxygen tension appears to direct the cultured embryonic stem cells (ESCs) to differentiate into cardiomyocytes, the underlying molecular mechanism remains unclear. At a molecular level, hypoxia inducible factor-1 (HIF-1) plays an important role in handling the hypoxia signal. In the present study, we demonstrated that expression of exogenous HIF-1 alpha cDNA into murine ESCs significantly promoted cardiogenesis as indicated by a higher percentage of beating embryoid body and troponin-T positive cell counts as well as increased expression of early and late cardiac markers, such as GATA-binding protein 4 and 6, NK2 transcription factor related locus 5, alpha-myosin heavy chain, beta-myosin heavy chain and myosin light chain 2 ventricular transcripts. In addition, the transduced cells exhibited increased mRNA levels of cardiotrophin-1 and vascular endothelial growth factor, along with phosphorylation of eNOS [p-eNOS (ser1171)]. Application of NOS inhibitors, diphenyleneiodonium chloride (DPI), N(omega)-Nitro-L-arginine methyl ester hydrochloride (L-NAME) or N(omega)-Nitro-L-arginine (L-NNA) abolished the HIF-1 alpha stimulated cardiac differentiation. With the clues of upregulated mRNA expression of calcium handling proteins, ryanodine receptor 2, sodium calcium exchanger and sarcoplasmic/endoplasmic reticulum calcium ATPase, in the transduced HIF-1 alpha ESCs, further study indicated that the maximum upstroke and decay velocity was significantly increased in both non-caffeine and caffeine-induced calcium transient in ESCs-derived cardiomyocytes. This suggests a well developed function of the sarcoplasmic reticulum in ESC-derived cardiomyocytes. Electrophysiological study also indicated that a portion of the HIF-1 alpha-transduced cells exhibited prominent phase-4 depolarization. These findings suggest that keen activation of the HIF-1 pathway enhances differentiation and maturation of cardiomyocytes derived from ESCs.


Assuntos
Células-Tronco Embrionárias/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Miocárdio/metabolismo , Animais , Diferenciação Celular , Citocinas/biossíntese , Coração/fisiologia , Hipóxia/metabolismo , Camundongos , Modelos Biológicos , RNA Mensageiro/metabolismo , Transdução de Sinais , Troponina T/biossíntese , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...