Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-17901001

RESUMO

A liquid chromatography-mass spectrometry (LC-MS) method has been developed to measure triethylenetetramine (TETA) and its metabolites in human samples. We identified two metabolites of TETA, N1-acetyltriethylenetetramine (MAT) and N1,N10-diacetyltriethylenetetramine (DAT), the latter being novel. We further developed this LC-MS method for the measurement of TETA and these metabolites in human plasma and urine in a single injection. Separation of analytes was achieved on a cyano column using 15% acetonitrile, 85% water (18 M Omega), and 0.1% heptafluorobutyric acid as the mobile phase. Simultaneous MS detection was performed at [M+H]+ values of 147, 189, 231 and 245, corresponding to TETA, MAT, DAT, and N1-acetylspermine as the internal standard, respectively. This method was successfully applied to measure TETA, MAT and DAT in plasma and urine of humans receiving oral drug treatment.


Assuntos
Quelantes/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Trientina/análogos & derivados , Trientina/análise , Calibragem , Quelantes/metabolismo , Humanos , Sensibilidade e Especificidade , Trientina/sangue , Trientina/urina
2.
Drug Metab Dispos ; 35(2): 221-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17108057

RESUMO

Triethylenetetramine (TETA), a selective Cu(II)-chelator used in the treatment of Wilson's disease, is now undergoing clinical trials for the treatment of heart failure in diabetes. Despite decades of clinical use, knowledge of its pharmacology in human subjects remains incomplete. Here, we first used liquid chromatography-mass spectrometry (LC-MS) to detect and identify major metabolites of TETA in human plasma and urine, and then used this method to measure concentrations of TETA and its metabolites in the urine of healthy and diabetic subjects who were administered increasing doses (300, 600, 1200, and 2400 mg) of TETA orally. Twenty-four-hour urine collections were performed before and after dosing participants. Two major metabolites of TETA were detected in human urine, N(1)-acetyltriethylenetetramine (MAT) and N(1),N(10)-diacetyltriethylenetetramine, the latter being novel. Both metabolites were verified with synthetic standards by LC-MS. The proportion of unchanged TETA excreted as a fraction of total urinary drug-derived molecules was significantly higher in healthy than in matched diabetic subjects, consistent with a higher rate of TETA metabolism in the latter. TETA-evoked increases in urinary Cu excretion in nondiabetic subjects were more closely correlated with parent drug concentrations than in diabetic subjects, whereas, by contrast, urinary Cu was more closely associated with the sum of TETA and MAT. These findings are consistent with the hypothesis that MAT could play a significant role in the molecular mechanism by which TETA extracts Cu(II) from the systemic compartment in diabetic subjects.


Assuntos
Quelantes/metabolismo , Cobre/urina , Diabetes Mellitus Tipo 2/metabolismo , Trientina/urina , Zinco/urina , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Trientina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...