Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 5(1): 166, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323795

RESUMO

Diabetic kidney disease is the leading cause of end-stage kidney disease worldwide; however, the integration of high-dimensional trans-omics data to predict this diabetic complication is rare. We develop artificial intelligence (AI)-assisted models using machine learning algorithms to identify a biomarker signature that predisposes high risk patients with diabetes mellitus (DM) to diabetic kidney disease based on clinical information, untargeted metabolomics, targeted lipidomics and genome-wide single nucleotide polymorphism (SNP) datasets. This involves 618 individuals who are split into training and testing cohorts of 557 and 61 subjects, respectively. Three models are developed. In model 1, the top 20 features selected by AI give an accuracy rate of 0.83 and an area under curve (AUC) of 0.89 when differentiating DM and non-DM individuals. In model 2, among DM patients, a biomarker signature of 10 AI-selected features gives an accuracy rate of 0.70 and an AUC of 0.76 when identifying subjects at high risk of renal impairment. In model 3, among non-DM patients, a biomarker signature of 25 AI-selected features gives an accuracy rate of 0.82 and an AUC of 0.76 when pinpointing subjects at high risk of chronic kidney disease. In addition, the performance of the three models is rigorously verified using an independent validation cohort. Intriguingly, analysis of the protein-protein interaction network of the genes containing the identified SNPs (RPTOR, CLPTM1L, ALDH1L1, LY6D, PCDH9, B3GNTL1, CDS1, ADCYAP and FAM53A) reveals that, at the molecular level, there seems to be interconnected factors that have an effect on the progression of renal impairment among DM patients. In conclusion, our findings reveal the potential of employing machine learning algorithms to augment traditional methods and our findings suggest what molecular mechanisms may underlie the complex interaction between DM and chronic kidney disease. Moreover, the development of our AI-assisted models will improve precision when diagnosing renal impairment in predisposed patients, both DM and non-DM. Finally, a large prospective cohort study is needed to validate the clinical utility and mechanistic implications of these biomarker signatures.

2.
Biomedicines ; 10(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35052795

RESUMO

An increased risk of cardiovascular events was identified in patients with peripheral artery disease (PAD). Clopidogrel is one of the most widely used antiplatelet medications. However, there are heterogeneous outcomes when clopidogrel is used to prevent cardiovascular events in PAD patients. Here, we use an artificial intelligence (AI)-assisted methodology to identify genetic factors potentially involved in the clopidogrel-resistant mechanism, which is currently unclear. Several discoveries can be pinpointed. Firstly, a high proportion (>50%) of clopidogrel resistance was found among diabetic PAD patients in Taiwan. Interestingly, our result suggests that platelet function test-guided antiplatelet therapy appears to reduce the post-interventional occurrence of major adverse cerebrovascular and cardiac events in diabetic PAD patients. Secondly, AI-assisted genome-wide association study of a single-nucleotide polymorphism (SNP) database identified a SNP signature composed of 20 SNPs, which are mapped into 9 protein-coding genes (SLC37A2, IQSEC1, WASHC3, PSD3, BTBD7, GLIS3, PRDM11, LRBA1, and CNR1). Finally, analysis of the protein connectivity map revealed that LRBA, GLIS3, BTBD7, IQSEC1, and PSD3 appear to form a protein interaction network. Intriguingly, the genetic factors seem to pinpoint a pathway related to endocytosis and recycling of P2Y12 receptor, which is the drug target of clopidogrel. Our findings reveal that a combination of AI-assisted discovery of SNP signatures and clinical parameters has the potential to develop an ethnic-specific precision medicine for antiplatelet therapy in diabetic PAD patients.

3.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572079

RESUMO

Heart failure (HF) is a global pandemic public health burden affecting one in five of the general population in their lifetime. For high-risk individuals, early detection and prediction of HF progression reduces hospitalizations, reduces mortality, improves the individual's quality of life, and reduces associated medical costs. In using an artificial intelligence (AI)-assisted genome-wide association study of a single nucleotide polymorphism (SNP) database from 117 asymptomatic high-risk individuals, we identified a SNP signature composed of 13 SNPs. These were annotated and mapped into six protein-coding genes (GAD2, APP, RASGEF1C, MACROD2, DMD, and DOCK1), a pseudogene (PGAM1P5), and various non-coding RNA genes (LINC01968, LINC00687, LOC105372209, LOC101928047, LOC105372208, and LOC105371356). The SNP signature was found to have a good performance when predicting HF progression, namely with an accuracy rate of 0.857 and an area under the curve of 0.912. Intriguingly, analysis of the protein connectivity map revealed that DMD, RASGEF1C, MACROD2, DOCK1, and PGAM1P5 appear to form a protein interaction network in the heart. This suggests that, together, they may contribute to the pathogenesis of HF. Our findings demonstrate that a combination of AI-assisted identifications of SNP signatures and clinical parameters are able to effectively identify asymptomatic high-risk subjects that are predisposed to HF.


Assuntos
Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Polimorfismo de Nucleotídeo Único , Idoso , Inteligência Artificial , Feminino , Estudo de Associação Genômica Ampla , Fatores de Risco de Doenças Cardíacas , Insuficiência Cardíaca/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...