Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater Eng ; 35(4): 387-399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968040

RESUMO

BACKGROUND: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability. OBJECTIVE: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering. METHODS: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture. RESULTS: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications. CONCLUSION: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.


Assuntos
Aloe , Sobrevivência Celular , Gelatina , Mucilagem Vegetal , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Poliésteres/química , Engenharia Tecidual/métodos , Gelatina/química , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Aloe/química , Mucilagem Vegetal/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Humanos , Membranas Artificiais , Animais
2.
ACS Omega ; 9(5): 5361-5370, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343984

RESUMO

Diabetic foot ulcers are a common complication of diabetes mellitus and can lead to severe infections and delayed wound healing. The development of effective wound dressings is crucial to promoting faster healing and preventing infections. This investigation aims to fabricate and characterize electrospun meshes composed of poly(ε-caprolactone) and collagen, extracted from tilapia skin. Additionally, tetracycline and chloramphenicol were incorporated into the dressings to explore their potential to combat wound infections. A comprehensive characterization was carried out, covering the physical structure, chemical composition, and potential application-related properties of the materials by the combination of scanning electron microscopy, Fourier transform infrared (FTIR), mechanical analysis, cell viability, live/dead staining, and microbiological analysis. Changes in mechanical properties were observed, related to the morphology of the membranes; the presence of the active molecules is evidenced by FTIR analysis; cell viability above control was observed for all the prepared membranes, and they were active in antimicrobial tests, suggesting that the developed materials have the potential to be further explored as wound dressings or scaffolds for diabetic foot ulcers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA