Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Res ; 65(2): 209-20, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15705165

RESUMO

We investigated the folding, stability, and specificity of dimerization of the neck regions of the kinesin-like proteins Kif3A (residues 356-416) and Kif3B (residues 351-411). We showed that the complementary charged regions found in the hinge regions (which directly follow the neck regions) of these proteins do not adopt any secondary structure in solution. We then explored the ability of the complementary charged regions to specify heterodimer formation for the neck region coiled-coils found in Kif3A and Kif3B. Redox experiments demonstrated that oppositely charged regions specified the formation of a heterodimeric coiled-coil. Denaturation studies with urea demonstrated that the negatively charged region of Kif3A dramatically destabilized its neck coiled-coil (urea1/2 value of 3.9 m compared with 6.7 m for the coiled-coil alone). By comparison, the placement of a positively charged region C-terminal to the neck coiled-coil of Kif3B had little effect on stability (urea1/2 value of 8.2 m compared with 8.8 m for the coiled-coil alone). The pairing of complementary charged regions leads to specific heterodimer formation where the stability of the heterodimeric neck coiled-coil with charged regions had similar stability (urea1/2 value of 7.8 m) to the most stable homodimer (Kif3B) with charged regions (urea1/2 value of 8.0 m) and dramatically more stable than the Kif3A homodimer with charged regions (urea1/2, value of 3.9 m). The heterodimeric coiled-coil with charged extensions has essentially the same stability as the heterodimeric coiled-coil on its own (urea1/2 values of 7.8 and 8.1 m, respectively) suggesting that specificity of heterodimerization is driven by non-specific attraction of the oppositely unstructured charged regions without affecting stability of the heterodimeric coiled-coil.


Assuntos
Cinesinas/química , Sequência de Aminoácidos , Dimerização , Dados de Sequência Molecular , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
2.
Biopolymers ; 47(1): 101-23, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9692331

RESUMO

The solution to the protein folding problem lies in defining the relative energetic contributions of short-range and long-range interactions. In other words, the tendency of a stretch of amino acids to adopt a final secondary structural fold is context dependent. Our approach to this problem is to address whether an amino acid sequence, a "cassette," with a defined secondary structure in the three-dimensional structure of a native protein, can adopt a different conformation when placed into a different protein environment. Thus, we designed de novo a disulfide-bridged two-stranded alpha-helical parallel coiled coil, where each polypeptide chain consisted of 39 residues, as a "cassette holder." The 11-residue cassette would be inserted into the center of each polypeptide chain between the two nucleating alpha-helices to replace the control sequence. This Structural Cassette Mutagenesis model permits the analysis of short-range interactions within the inserted cassette as well as long-range interactions between the nucleating helices and the cassette region. The cassette holder, with a control sequence as the cassette, had a GdnHCl transition midpoint during denaturation of 5.6M. To demonstrate the feasibility of our model, an 11-residue beta-strand cassette from an immunoglobulin fold was inserted. The cassette was fully induced into the alpha-helical conformation with a [GdnHCl]1/2 value of 3.2M. To demonstrate the importance of short-range interactions (beta-sheet/alpha-helical propensities of amino acid side chains) in modulating structure and stability, a series of 1-5 threonine residues (highest beta-sheet propensity) were substituted into the solvent-exposed portions of the cassette in the alpha-helical conformation. Each successive substitution systematically decreased the stability of the coiled coil with peptide T4b (4 Thr residues) having a [GdnHCl]1/2 value of 2.2M. The single substitution of Ile in the hydrophobic core of the cassette with Ala or Thr had the most dramatic effect on protein stability (peptide 120T, [GdnHCl]1/2 value of 1.4M). Though these substitutions were able to modulate stability, they were not able to disrupt the alpha-helical conformation of the cassette, showing the importance of the nucleating alpha-helices on either side of the cassette in controlling conformation of the cassette. We have demonstrated the feasibility of our model protein to accept a beta-strand cassette. The effect of cassettes containing other beta-strands, beta-turns, loops, regions of undefined structure, and helical segments on conformation and stability of our model protein will also be determined.


Assuntos
Mutagênese Insercional , Engenharia de Proteínas , Sequência de Aminoácidos , Biopolímeros/química , Desenho de Fármacos , Estabilidade de Medicamentos , Humanos , Cadeias lambda de Imunoglobulina/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...