Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 142(2): 295-321, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019156

RESUMO

Chronic traumatic encephalopathy (CTE) is a progressive tauopathy found in contact sport athletes, military veterans, and others exposed to repetitive head impacts. White matter rarefaction and axonal loss have been reported in CTE but have not been characterized on a molecular or cellular level. Here, we present RNA sequencing profiles of cell nuclei from postmortem dorsolateral frontal white matter from eight individuals with neuropathologically confirmed CTE and eight age- and sex-matched controls. Analyzing these profiles using unbiased clustering approaches, we identified eighteen transcriptomically distinct cell groups (clusters), reflecting cell types and/or cell states, of which a subset showed differences between CTE and control tissue. Independent in situ methods applied on tissue sections adjacent to that used in the single-nucleus RNA-seq work yielded similar findings. Oligodendrocytes were found to be most severely affected in the CTE white matter samples; they were diminished in number and altered in relative proportions across subtype clusters. Further, the CTE-enriched oligodendrocyte population showed greater abundance of transcripts relevant to iron metabolism and cellular stress response. CTE tissue also demonstrated excessive iron accumulation histologically. In astrocytes, total cell numbers were indistinguishable between CTE and control samples, but transcripts associated with neuroinflammation were elevated in the CTE astrocyte groups compared to controls. These results demonstrate specific molecular and cellular differences in CTE oligodendrocytes and astrocytes and suggest that white matter alterations are a critical aspect of CTE neurodegeneration.


Assuntos
Astrócitos/patologia , Encefalopatia Traumática Crônica/patologia , Oligodendroglia/metabolismo , Tauopatias/patologia , Idoso , Astrócitos/metabolismo , Atletas , Traumatismos em Atletas/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neuroinflamatórias/patologia , Oligodendroglia/patologia , Esportes , Substância Branca/patologia , Proteínas tau/metabolismo
2.
Radiology ; 294(2): 377-385, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769744

RESUMO

Background Gadolinium retention after repeated gadolinium-based contrast agent (GBCA) exposure has been reported in subcortical gray matter. However, gadolinium retention in the cerebral cortex has not been systematically investigated. Purpose To determine whether and where gadolinium is retained in rat and human cerebral cortex. Materials and Methods The cerebral cortex in Sprague-Dawley rats treated with gadopentetate dimeglumine (three doses over 4 weeks; cumulative gadolinium dose, 7.2 mmol per kilogram of body weight; n = 6) or saline (n = 6) was examined with antemortem MRI. Two human donors with repeated GBCA exposure (three and 15 doses; 1 and 5 months after exposure), including gadopentetate dimeglumine, and two GBCA-naive donors were also evaluated. Elemental brain maps (gadolinium, phosphorus, zinc, copper, iron) for rat and human brains were constructed by using laser ablation inductively coupled plasma mass spectrometry. Results Gadopentetate dimeglumine-treated rats showed region-, subregion-, and layer-specific gadolinium retention in the neocortex (anterior cingulate cortex: mean gadolinium concentration, 0.28 µg ∙ g-1 ± 0.04 [standard error of the mean]) that was comparable (P > .05) to retention in the allocortex (mean gadolinium concentration, 0.33 µg ∙ g-1 ± 0.04 in piriform cortex, 0.24 µg ∙ g-1 ± 0.04 in dentate gyrus, 0.17 µg ∙ g-1 ± 0.04 in hippocampus) and subcortical structures (0.47 µg ∙ g-1 ± 0.10 in facial nucleus, 0.39 µg ∙ g-1 ± 0.10 in choroid plexus, 0.29 µg ∙ g-1 ± 0.05 in caudate-putamen, 0.26 µg ∙ g-1 ± 0.05 in reticular nucleus of the thalamus, 0.24 µg ∙ g-1 ± 0.04 in vestibular nucleus) and significantly greater than that in the cerebellum (0.17 µg ∙ g-1 ± 0.03, P = .01) and white matter tracts (anterior commissure: 0.05 µg ∙ g-1 ± 0.01, P = .002; corpus callosum: 0.05 µg ∙ g-1 ± 0.02, P = .001; cranial nerve: 0.02 µg ∙ g-1 ± 0.01, P = .004). Retained gadolinium colocalized with parenchymal iron. T1-weighted MRI signal intensification was not observed. Gadolinium retention was detected in the cerebral cortex, pia mater, and pia-ensheathed leptomeningeal vessels in two GBCA-exposed human brains but not in two GBCA-naive human brains. Conclusion Repeated gadopentetate dimeglumine exposure is associated with gadolinium retention in specific regions, subregions, and layers of cerebral cortex that are critical for higher cognition, affect, and behavior regulation, sensorimotor coordination, and executive function. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Kanal in this issue.


Assuntos
Córtex Cerebral/metabolismo , Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Administração Intravenosa , Adulto , Animais , Meios de Contraste/administração & dosagem , Feminino , Gadolínio DTPA/administração & dosagem , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Modelos Animais , Ratos , Ratos Sprague-Dawley
3.
Semin Pediatr Neurol ; 30: 14-25, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235015

RESUMO

Although concussion has been a subject of interest for centuries, this condition remains poorly understood. The mechanistic underpinnings and accepted definition of concussion remain elusive. To make sense of these issues, this article presents a brief history of concussion studies, detailing the evolution of motivations and experimental conclusions over time. Interest in concussion as a subject of scientific inquiry has increased with growing concern about the long-term consequences of mild traumatic brain injury (TBI). Although concussion is often associated with mild TBI, these conditions-the former a neurological syndrome, the latter a neurological event-are distinct, both mechanistically and pathobiologically. Modern research primarily focuses on the study of the biomechanics, pathophysiology, potential biomarkers and neuroimaging to distinguish concussion from mild TBI. In addition, mild TBI and concussion outcomes are influenced by age, sex, and genetic differences in people. With converging experimental objectives and methodologies, future concussion research has the potential to improve clinical assessment, treatment, and preventative measures.


Assuntos
Fenômenos Biomecânicos , Concussão Encefálica/diagnóstico , Concussão Encefálica/fisiopatologia , Exame Neurológico/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...