Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 151: 155716, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37918793

RESUMO

BACKGROUND: The adipocyte hormone adiponectin improves insulin sensitivity and there is an inverse correlation between adiponectin levels and type-2 diabetes risk. Previous research shows that adiponectin remodels the adipose tissue into a more efficient metabolic sink. For instance, mice that overexpress adiponectin show increased capacity for hyperplastic adipose tissue expansion as evident from smaller and metabolically more active white adipocytes. In contrast, the brown adipose tissue (BAT) of these mice looks "whiter" possibly indicating reduced metabolic activity. Here, we aimed to further establish the effect of adiponectin on adipose tissue expansion and adipocyte mitochondrial function as well as to unravel mechanistic aspects in this area. METHODS: Brown and white adipose tissues from adiponectin overexpressing (APN tg) mice and littermate wildtype controls, housed at room and cold temperature, were studied by histological, gene/protein expression and flow cytometry analyses. Metabolic and mitochondrial functions were studied by radiotracers and Seahorse-based technology. In addition, mitochondrial function was assessed in cultured adiponectin deficient adipocytes from APN knockout and heterozygote mice. RESULTS: APN tg BAT displayed increased proliferation prenatally leading to enlarged BAT. Postnatally, APN tg BAT turned whiter than control BAT, confirming previous reports. Furthermore, elevated adiponectin augmented the sympathetic innervation/activation within adipose tissue. APN tg BAT displayed reduced metabolic activity and reduced mitochondrial oxygen consumption rate (OCR). In contrast, APN tg inguinal white adipose tissue (IWAT) displayed enhanced metabolic activity. These metabolic differences between genotypes were apparent also in cultured adipocytes differentiated from BAT and IWAT stroma vascular fraction, and the OCR was reduced in both brown and white APN heterozygote adipocytes. In both APN tg BAT and IWAT, the mesenchymal stem cell-related genes were upregulated along with an increased abundance of Lineage-Sca1+CD34- "beige-like" adipocyte precursor cells. In vitro, the adiponectin receptor agonist Adiporon increased the expression of the proliferation marker Pcna and decreased the expression of Cd34 in Sca1+ mesenchymal stem cells. CONCLUSIONS: We propose that the seemingly opposite effect of adiponectin on BAT and IWAT is mediated by a common mechanism; while reduced adiponectin levels are linked to lower adipocyte OCR, elevated adiponectin levels stimulate expansion of adipocyte precursor cells that produce adipocytes with intrinsically higher metabolic rate than classical white but lower metabolic rate than classical brown adipocytes. Moreover, adiponectin can modify the adipocytes' metabolic activity directly and by enhancing the sympathetic innervation within a fat depot.


Assuntos
Adipócitos Marrons , Adipócitos Brancos , Adiponectina , Termogênese , Animais , Camundongos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Termogênese/genética
2.
J Cell Biochem ; 124(3): 382-395, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715685

RESUMO

Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.


Assuntos
Tecido Adiposo Marrom , Dieta Hiperlipídica , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microscopia , Tecido Adiposo Branco/metabolismo , Fígado/metabolismo , Gorduras na Dieta , Tecido Adiposo , Camundongos Endogâmicos C57BL
3.
Mol Metab ; 63: 101535, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760318

RESUMO

OBJECTIVE: Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the cytosol into the endoplasmic retitculum (ER) and is essential for appropriate regulation of intracellular Ca2+ homeostasis. The objective of this study was to test the hypothesis that SERCA pumps are involved in the regulation of white adipocyte hormone secretion and other aspects of adipose tissue function and that this control is disturbed in obesity-induced type-2 diabetes. METHODS: SERCA expression was measured in isolated human and mouse adipocytes as well as in whole mouse adipose tissue by Western blot and RT-qPCR. To test the significance of SERCA2 in adipocyte functionality and whole-body metabolism, we generated adipocyte-specific SERCA2 knockout mice. The mice were metabolically phenotyped by glucose tolerance and tracer studies, histological analyses, measurements of glucose-stimulated insulin release in isolated islets, and gene/protein expression analyses. We also tested the effect of pharmacological SERCA inhibition and genetic SERCA2 ablation in cultured adipocytes. Intracellular and mitochondrial Ca2+ levels were recorded with dual-wavelength ratio imaging and mitochondrial function was assessed by Seahorse technology. RESULTS: We demonstrate that SERCA2 is downregulated in white adipocytes from patients with obesity and type-2 diabetes as well as in adipocytes from diet-induced obese mice. SERCA2-ablated adipocytes display disturbed Ca2+ homeostasis associated with upregulated ER stress markers and impaired hormone release. These adipocyte alterations are linked to mild lipodystrophy, reduced adiponectin levels, and impaired glucose tolerance. Interestingly, adipocyte-specific SERCA2 ablation leads to increased glucose uptake in white adipose tissue while the glucose uptake is reduced in brown adipose tissue. This dichotomous effect on glucose uptake is due to differently regulated mitochondrial function. In white adipocytes, SERCA2 deficiency triggers an adaptive increase in fibroblast growth factor 21 (FGF21), increased mitochondrial uncoupling protein 1 (UCP1) levels, and increased oxygen consumption rate (OCR). In contrast, brown SERCA2 null adipocytes display reduced OCR despite increased mitochondrial content and UCP1 levels compared to wild type controls. CONCLUSIONS: Our data suggest causal links between reduced white adipocyte SERCA2 levels, deranged adipocyte Ca2+ homeostasis, adipose tissue dysfunction and type-2 diabetes.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus Tipo 2 , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hormônios/metabolismo , Humanos , Camundongos , Obesidade/metabolismo
4.
Front Immunol ; 13: 914956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720277

RESUMO

The adipose tissue undergoes substantial tissue remodeling during weight gain-induced expansion as well as in response to the mechanical and immunological stresses from a growing tumor. We identified the C1q/TNF-related protein family member C1qtnf3 as one of the most upregulated genes that encode secreted proteins in tumor-associated inguinal adipose tissue - especially in high fat diet-induced obese mice that displayed 3-fold larger tumors than their lean controls. Interestingly, inguinal adipose tissue C1qtnf3 was co-regulated with several macrophage markers and chemokines and was primarily expressed in fibroblasts while only low levels were detected in adipocytes and macrophages. Administration of C1QTNF3 neutralizing antibodies inhibited macrophage accumulation in tumor-associated inguinal adipose tissue while tumor growth was unaffected. In line with this finding, C1QTNF3 exerted chemotactic actions on both M1- and M2-polarized macrophages in vitro. Moreover, C1QTNF3 treatment of M2-type macrophages stimulated the ERK and Akt pathway associated with increased M1-like polarization as judged by increased expression of M1-macrophage markers, increased production of nitric oxide, reduced oxygen consumption and increased glycolysis. Based on these results, we propose that macrophages are recruited to adipose tissue sites with increased C1QTNF3 production. However, the impact of the immunomodulatory effects of C1QTNF3 in adipose tissue remodeling warrants future investigations.


Assuntos
Quimiotaxia , Obesidade , Tecido Adiposo , Animais , Inflamação/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Gordura Subcutânea/patologia
5.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769312

RESUMO

We sought to identify therapeutic targets for breast cancer by investigating the metabolic symbiosis between breast cancer and adipose tissue. To this end, we compared orthotopic E0771 breast cancer tumors that were in direct contact with adipose tissue with ectopic E0771 tumors in mice. Orthotopic tumors grew faster and displayed increased de novo lipogenesis compared to ectopic tumors. Adipocytes release large amounts of lactate, and we found that both lactate pretreatment and adipose tissue co-culture augmented de novo lipogenesis in E0771 cells. Continuous treatment with the selective FASN inhibitor Fasnall dose-dependently decreased the E0771 viability in vitro. However, daily Fasnall injections were effective only in 50% of the tumors, while the other 50% displayed accelerated growth. These opposing effects of Fasnall in vivo was recapitulated in vitro; intermittent Fasnall treatment increased the E0771 viability at lower concentrations and suppressed the viability at higher concentrations. In conclusion, our data suggest that adipose tissue enhances tumor growth by stimulating lipogenesis. However, targeting lipogenesis alone can be deleterious. To circumvent the tumor's ability to adapt to treatment, we therefore believe that it is necessary to apply an aggressive treatment, preferably targeting several metabolic pathways simultaneously, together with conventional therapy.


Assuntos
Tecido Adiposo/patologia , Neoplasias da Mama/patologia , Lipogênese , Lipólise , Consumo de Oxigênio , Animais , Feminino , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
FASEB J ; 35(4): e21299, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33715227

RESUMO

Hyperandrogenism is the main characteristic of polycystic ovary syndrome, which affects placental function and fetal growth, and leads to reproductive and metabolic dysfunction in female offspring. Adiponectin acts on the placenta and may exert endocrine effects on the developing fetus. This study aims to investigate if maternal and/or fetal adiponectin can prevent metabolic and reproductive dysfunction in prenatal androgenized (PNA) female offspring. Adiponectin transgenic (APNtg) and wild-type dams received dihydrotestosterone/vehicle injections between gestational days 16.5-18.5 to induce PNA offspring, which were followed for 4 months. Offspring from APNtg dams were smaller than offspring from wild-type dams, independent of genotype. Insulin sensitivity was higher in wild-type mice from APNtg dams compared to wild-types from wild-type dams, and insulin sensitivity correlated with fat mass and adipocyte size. PNA increased visceral fat% and adipocyte size in wild-type offspring from wild-type dams, while wild-type and APNtg offspring from APNtg dams were protected against this effect. APNtg mice had smaller adipocytes than wild-types and this morphology was associated with an increased expression of genes regulating adipogenesis (Ppard, Pparg, Cebpa, and Cebpb) and metabolism (Chrebp and Lpl). Anogenital distance was increased in all PNA-exposed wild-type offspring, but there was no increase in PNA APNtg offspring, suggesting that adiponectin overexpression protects against this effect. In conclusion, elevated adiponectin levels in utero improve insulin sensitivity, reduce body weight and fat mass gain in the adult offspring and protect against PNA-induced visceral adiposity. In conclusion, these data suggest that PNA offspring benefit from prenatal adiponectin supplementation.


Assuntos
Adipócitos/metabolismo , Adiponectina/metabolismo , Adiposidade , Animais , Feminino , Desenvolvimento Fetal , Camundongos , Camundongos Transgênicos , Gravidez , Virilismo
7.
J Clin Invest ; 130(12): 6639-6655, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196462

RESUMO

By restoring glucose-regulated insulin secretion, glucagon-like peptide-1-based (GLP-1-based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic ß cells. However, the reason why only GLP-1-based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to ß cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of ß cells due to genetic (ß cell-specific Kcnj11-/- mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse ß cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in ß cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.


Assuntos
Cromograninas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Incretinas/farmacologia , Células Secretoras de Insulina/metabolismo , Transdução de Sinais , Animais , Cromograninas/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
8.
Int J Obes (Lond) ; 44(11): 2323-2334, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843711

RESUMO

BACKGROUND/OBJECTIVES: Visceral adiposity is associated with increased diabetes risk, while expansion of subcutaneous adipose tissue may be protective. However, the visceral compartment contains different fat depots. Peripancreatic adipose tissue (PAT) is an understudied visceral fat depot. Here, we aimed to define PAT functionality in lean and high-fat-diet (HFD)-induced obese mice. SUBJECTS/METHODS: Four adipose tissue depots (inguinal, mesenteric, gonadal, and peripancreatic adipose tissue) from chow- and HFD-fed male mice were compared with respect to adipocyte size (n = 4-5/group), cellular composition (FACS analysis, n = 5-6/group), lipogenesis and lipolysis (n = 3/group), and gene expression (n = 6-10/group). Radioactive tracers were used to compare lipid and glucose metabolism between these four fat depots in vivo (n = 5-11/group). To determine the role of PAT in obesity-associated metabolic disturbances, PAT was surgically removed prior to challenging the mice with HFD. PAT-ectomized mice were compared to sham controls with respect to glucose tolerance, basal and glucose-stimulated insulin levels, hepatic and pancreatic steatosis, and gene expression (n = 8-10/group). RESULTS: We found that PAT is a tiny fat depot (~0.2% of the total fat mass) containing relatively small adipocytes and many "non-adipocytes" such as leukocytes and fibroblasts. PAT was distinguished from the other fat depots by increased glucose uptake and increased fatty acid oxidation in both lean and obese mice. Moreover, PAT was the only fat depot where the tissue weight correlated positively with liver weight in obese mice (R = 0.65; p = 0.009). Surgical removal of PAT followed by 16-week HFD feeding was associated with aggravated hepatic steatosis (p = 0.008) and higher basal (p < 0.05) and glucose-stimulated insulin levels (p < 0.01). PAT removal also led to enlarged pancreatic islets and increased pancreatic expression of markers of glucose-stimulated insulin secretion and islet development (p < 0.05). CONCLUSIONS: PAT is a small metabolically highly active fat depot that plays a previously unrecognized role in the pathogenesis of hepatic steatosis and insulin resistance in advanced obesity.


Assuntos
Tecido Adiposo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Resistência à Insulina , Pâncreas/fisiologia , Adipócitos/citologia , Animais , Glucose/metabolismo , Metabolismo dos Lipídeos , Lipogênese , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Transcriptoma
9.
J Endocrinol ; 247(1): 25-38, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32668406

RESUMO

Here we have investigated the role of the protein caveolin 1 (Cav1) and caveolae in the secretion of the white adipocyte hormone adiponectin. Using mouse primary subcutaneous adipocytes genetically depleted of Cav1, we show that the adiponectin secretion, stimulated either adrenergically or by insulin, is abrogated while basal (unstimulated) release of adiponectin is elevated. Adiponectin secretion is similarly affected in wildtype mouse and human adipocytes where the caveolae structure was chemically disrupted. The altered ex vivo secretion in adipocytes isolated from Cav1 null mice is accompanied by lowered serum levels of the high-molecular weight (HMW) form of adiponectin, whereas the total concentration of adiponectin is unaltered. Interestingly, levels of HMW adiponectin are maintained in adipose tissue from Cav1-depleted mice, signifying that a secretory defect is present. The gene expression of key regulatory proteins known to be involved in cAMP/adrenergically triggered adiponectin exocytosis (the beta-3-adrenergic receptor and exchange protein directly activated by cAMP) remains intact in Cav1 null adipocytes. Microscopy and fractionation studies indicate that adiponectin vesicles do not co-localise with Cav1 but that some vesicles are associated with a specific fraction of caveolae. Our studies propose that Cav1 has an important role in secretion of HMW adiponectin, even though adiponectin-containing vesicles are not obviously associated with this protein. We suggest that Cav1, and/or the caveolae domain, is essential for the organisation of signalling pathways involved in the regulation of HMW adiponectin exocytosis, a function that is disrupted in Cav1/caveolae-depleted adipocytes.


Assuntos
Adipócitos Brancos/metabolismo , Adiponectina/metabolismo , Caveolina 1/fisiologia , Adiponectina/sangue , Adiponectina/genética , Adulto , Idoso , Animais , Caveolina 1/deficiência , Membrana Celular/química , Dieta , Exocitose/fisiologia , Feminino , Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(34): E7187-E7196, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28790184

RESUMO

Adiponectin, together with adipocyte size, is the strongest factor associated with insulin resistance in women with polycystic ovary syndrome (PCOS). This study investigates the causal relationship between adiponectin levels and metabolic and reproductive functions in PCOS. Prepubertal mice overexpressing adiponectin from adipose tissue (APNtg), adiponectin knockouts (APNko), and their wild-type (WT) littermate mice were continuously exposed to placebo or dihydrotestosterone (DHT) to induce PCOS-like traits. As expected, DHT exposure led to reproductive dysfunction, as judged by continuous anestrus, smaller ovaries with a decreased number of corpus luteum, and an increased number of cystic/atretic follicles. A two-way between-groups analysis showed that there was a significant main effect for DHT exposure, but not for genotype, indicating adiponectin does not influence follicle development. Adiponectin had, however, some protective effects on ovarian function. Similar to in many women with PCOS, DHT exposure led to reduced adiponectin levels, larger adipocyte size, and reduced insulin sensitivity in WTs. APNtg mice remained metabolically healthy despite DHT exposure, while APNko-DHT mice were even more insulin resistant than their DHT-exposed littermate WTs. DHT exposure also reduced the mRNA expression of genes involved in metabolic pathways in gonadal adipose tissue of WT and APNko, but this effect of DHT was not observed in APNtg mice. Moreover, APNtg-DHT mice displayed increased pancreatic mRNA levels of insulin receptors, Pdx1 and Igf1R, suggesting adiponectin stimulates beta cell viability/hyperplasia in the context of PCOS. In conclusion, adiponectin improves metabolic health but has only minor effects on reproductive functions in this PCOS-like mouse model.


Assuntos
Adiponectina/metabolismo , Síndrome do Ovário Policístico/metabolismo , Adiponectina/genética , Tecido Adiposo/metabolismo , Androgênios/efeitos adversos , Animais , Di-Hidrotestosterona/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Resistência à Insulina , Camundongos , Camundongos Knockout , Síndrome do Ovário Policístico/genética
11.
Am J Physiol Endocrinol Metab ; 313(3): E344-E358, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28588096

RESUMO

Pharmacological ß3-adrenergic receptor (ß3AR) activation leads to increased mitochondrial biogenesis and activity in white adipose tissue (WAT), a process commonly referred to as "browning", and transiently increased insulin release. These effects are associated with improved metabolic function and weight loss. It is assumed that this impact of ß3AR agonists is mediated solely through activation of ß3ARs in adipose tissue. However, ß3ARs are also found in the brain, in areas such as the brain stem and the hypothalamus, which provide multisynaptic innervation to brown and white adipose depots. Thus, contrary to the current adipocentric view, the central nervous system (CNS) may also have the ability to regulate energy balance and metabolism through actions on central ß3ARs. Therefore, this study aimed to elucidate whether CNS ß3ARs can regulate browning of WAT and other aspects of metabolic regulation, such as food intake control and insulin release. We found that acute central injection of ß3AR agonist potently reduced food intake, body weight, and increased hypothalamic neuronal activity in rats. Acute central ß3AR stimulation was also accompanied by a transient increase in circulating insulin levels. Moreover, subchronic central ß3AR agonist treatment led to a browning response in both inguinal (IWAT) and gonadal WAT (GWAT), along with reduced GWAT and increased BAT mass. In high-fat, high-sugar-fed rats, subchronic central ß3AR stimulation reduced body weight, chow, lard, and sucrose water intake, in addition to increasing browning of IWAT and GWAT. Collectively, our results identify the brain as a new site of action for the anorexic and browning impact of ß3AR activation.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Peso Corporal/efeitos dos fármacos , Dioxóis/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Animais , Linhagem Celular , Sistema Nervoso Central , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Perfilação da Expressão Gênica , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Secreção de Insulina , Iodeto Peroxidase/genética , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Proteína Desacopladora 1/genética , Iodotironina Desiodinase Tipo II
12.
J Endocrinol ; 234(1): 15-27, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28442507

RESUMO

Characterising the molecular networks that negatively regulate pancreatic ß-cell function is essential for understanding the underlying pathogenesis and developing new treatment strategies for type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic fat storage, meta-inflammation, and fibrosis in liver and skeletal muscle. Here, we assessed the role of STK25 in control of progression of non-alcoholic fatty pancreas disease in the context of chronic exposure to dietary lipids in mice. We found that overexpression of STK25 in high-fat-fed transgenic mice aggravated diet-induced lipid storage in the pancreas compared with that of wild-type controls, which was accompanied by exacerbated pancreatic inflammatory cell infiltration, stellate cell activation, fibrosis and apoptosis. Pancreas of Stk25 transgenic mice also displayed a marked decrease in islet ß/α-cell ratio and alteration in the islet architecture with an increased presence of α-cells within the islet core, whereas islet size remained similar between genotypes. After a continued challenge with a high-fat diet, lower levels of fasting plasma insulin and C-peptide, and higher levels of plasma leptin, were detected in Stk25 transgenic vs wild-type mice. Furthermore, the glucose-stimulated insulin secretion was impaired in high-fat-fed Stk25 transgenic mice during glucose tolerance test, in spite of higher net change in blood glucose concentrations compared with wild-type controls, suggesting islet ß-cell dysfunction. In summary, this study unravels a role for STK25 in determining the susceptibility to diet-induced non-alcoholic fatty pancreas disease in mice in connection to obesity. Our findings highlight STK25 as a potential drug target for metabolic disease.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Pancreatopatias/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Glicemia/análise , Peptídeo C/sangue , Expressão Gênica , Teste de Tolerância a Glucose , Inflamação/patologia , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiopatologia , Leptina/sangue , Metabolismo dos Lipídeos , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Pancreatopatias/patologia , Proteínas Serina-Treonina Quinases/genética
13.
Diabetes ; 64(8): 2791-804, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25845663

RESUMO

Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator of glucose and insulin homeostasis based on observations in myoblasts with acute depletion of STK25 and in STK25-overexpressing transgenic mice. Here, we challenged Stk25 knockout mice and wild-type littermates with a high-fat diet and showed that STK25 deficiency suppressed development of hyperglycemia and hyperinsulinemia, improved systemic glucose tolerance, reduced hepatic gluconeogenesis, and increased insulin sensitivity. Stk25(-/-) mice were protected from diet-induced liver steatosis accompanied by decreased protein levels of acetyl-CoA carboxylase, a key regulator of both lipid oxidation and synthesis. Lipid accumulation in Stk25(-/-) skeletal muscle was reduced, and expression of enzymes controlling the muscle oxidative capacity (Cpt1, Acox1, Cs, Cycs, Ucp3) and glucose metabolism (Glut1, Glut4, Hk2) was increased. These data are consistent with our previous study of STK25 knockdown in myoblasts and reciprocal to the metabolic phenotype of Stk25 transgenic mice, reinforcing the validity of the results. The findings suggest that STK25 deficiency protects against the metabolic consequences of chronic exposure to dietary lipids and highlight the potential of STK25 antagonists for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Gluconeogênese/genética , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Glicemia/metabolismo , Composição Corporal/genética , Peso Corporal/genética , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Teste de Tolerância a Glucose , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo
14.
PLoS One ; 8(2): e57834, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469081

RESUMO

Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.


Assuntos
Regulação da Expressão Gênica , Grelina/metabolismo , Ilhotas Pancreáticas/metabolismo , Neuropeptídeos/metabolismo , Obesidade/metabolismo , Animais , Metabolismo Basal , Técnicas de Inativação de Genes , Insulina/sangue , Masculino , Camundongos , Neuropeptídeos/deficiência , Neuropeptídeos/genética
15.
FASEB J ; 26(8): 3393-411, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22601779

RESUMO

The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.


Assuntos
Adipócitos/metabolismo , Grelina/fisiologia , Resistência à Insulina , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adiponectina , Animais , Apoptose/efeitos dos fármacos , Dieta Hiperlipídica , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Inflamação , Ilhotas Pancreáticas/metabolismo , Leptina , Lipólise/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
16.
Nutr Neurosci ; 12(6): 272-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19925721

RESUMO

The present study evaluated whether the administration of cereals enriched with nutrients that are facilitators of sleep could help improve the sleep of infants who had sleep disorders at night time. Thirty infants aged 8-16 months with sleep disorders involving at least three nocturnal waking episodes took part in the study. They were given a night-time 'sleep facilitating cereal' product containing 225 mg tryptophan, 5.3 mg adenosine-5'-P, and 6.3 mg uridine-5'-P per 100 g of product. These cereals were given in a double-blind procedure lasting 5 weeks, with ingestion of the cereal between 18:00 and 06:00. In the control week, the children received a standard cereal (75 mg tryptophan/100 g product without nucleotides) dissolved in a standard formula milk (231.5 mg tryptophan, 2.6 mg adenosine-5'-P, 5 mg uridine-5'-P, per 100 g product). In one experimental week, the children received the night-time sleep facilitating cereal together with the standard formula milk. In another week, they received the sleep facilitating cereal together with a night milk specially formulated to attain the sleep rhythm (480 mg tryptophan, 8.8 mg uridine-5'-P, and 7.6 mg adenosine-5'-P per 100 g product). The three experimental weeks were separated by two wash-out weeks in which the milk and cereal administered was identical in composition to that of the control week. All the infants received a programmed writer actimeter which they wore continually, attached to their ankles, to record their motor activity. The recorded activity was used to calculate information about the time in bed, assumed sleep, actual sleep, sleep efficiency, sleep latency, immobility, and total activity. The infants receiving the enriched cereal during the time of darkness showed improvements in their sleep parameters, regardless of whether the milk they took at night was standard or enriched with tryptophan, adenosine-5'-P, and uridine-5'-P. In summary, the administration of enriched cereals led to an improvement in sleep, regardless of the type of infant milk used. These results support the concept of chrononutrition since they confirm that the sleep/wake rhythm can be influenced by diet.


Assuntos
Monofosfato de Adenosina/administração & dosagem , Grão Comestível/química , Alimentos Fortificados , Alimentos Infantis , Transtornos do Sono do Ritmo Circadiano/dietoterapia , Triptofano/administração & dosagem , Uridina Monofosfato/administração & dosagem , Cronoterapia/métodos , Estudos Cross-Over , Método Duplo-Cego , Ingestão de Alimentos , Humanos , Lactente , Atividade Motora , Fotoperíodo , Sono , Fatores de Tempo
17.
Nutr Neurosci ; 12(1): 2-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19178785

RESUMO

Breast-milk contains a potent mixture of diverse components, such as the non-protein nitrogen fraction which includes nucleotides, whose variation in levels is evident throughout lactation. In addition, these substances play an important role in sleep homeostasis. In the present study, human milk samples were analyzed using a capillary electrophoresis system. The rhythmicity of each nucleotide was studied by cosinor analysis. It was found that the nucleotides 5'AMP, 5'GMP, 5'CMP, and 5'IMP have significant (P < 0.05) circadian rhythms, the acrophases of the first two being during the night, and of the latter two during the day. While 5'UMP did not show a clear circadian rhythm, there was an increase in its levels at night. In conclusion, the rise in nocturnal levels of 5'AMP, 5'GMP, and 5'UMP could be involved in inducing the 'hypnotic' action of breast-milk at night in the infant.


Assuntos
Ritmo Circadiano , Leite Humano/química , Nucleotídeos/análise , Sono/fisiologia , Monofosfato de Adenosina/análise , Adulto , Aleitamento Materno , Monofosfato de Citidina/análise , Eletroforese Capilar , Feminino , Guanosina Monofosfato/análise , Humanos , Inosina Monofosfato/análise , Cegueira Noturna , Nucleotídeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...