Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(8): 3496-3517, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36005137

RESUMO

Rheumatoid arthritis (RA), osteoarthritis (OA), and periodontal disease (PD) are chronic inflammatory diseases that are globally prevalent, and pose a public health concern. The search for a potential mechanism linking PD to RA and OA continues, as it could play a significant role in disease prevention and treatment. Recent studies have linked RA, OA, and PD to Porphyromonas gingivalis (PG), a periodontal bacterium, through a similar dysregulation in an inflammatory mechanism. This study aimed to identify potential gene signatures that could assist in early diagnosis as well as gain insight into the molecular mechanisms of these diseases. The expression data sets with the series IDs GSE97779, GSE123492, and GSE24897 for macrophages of RA, OA synovium, and PG stimulated macrophages (PG-SM), respectively, were retrieved and screened for differentially expressed genes (DEGs). The 72 common DEGs among RA, OA, and PG-SM were further subjected to gene-gene correlation analysis. A GeneMANIA interaction network of the 47 highly correlated DEGs comprises 53 nodes and 271 edges. Network centrality analysis identified 15 hub genes, 6 of which are DEGs (API5, ATE1, CCNG1, EHD1, RIN2, and STK39). Additionally, two significantly up-regulated non-hub genes (IER3 and RGS16) showed interactions with hub genes. Functional enrichment analysis of the genes showed that "apoptotic regulation" and "inflammasomes" were among the major pathways. These eight genes can serve as important signatures/targets, and provide new insights into the molecular mechanism of PG-induced RA, OA, and PD.

2.
Microb Pathog ; 159: 105150, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34425197

RESUMO

Salmonella enterica serovar Typhi (S. Typhi), a causative agent of typhoid fever, is a Gram-negative, human-restricted pathogen that causes significant morbidity and mortality, particularly in developing countries. The currently available typhoid vaccines are not recommended to children below six years of age and have poor long-term efficacy. Due to these limitations and the emerging threat of multidrug-resistance (MDR) strains, the development of a new vaccine is urgently needed. The present study aims to design a multiepitope-based subunit vaccine (MESV) against MDR S. Typhi str. CT18 using a computational-based approach comprising subtractive proteomics and immunoinformatics. Firstly, we investigated the proteome of S. Typhi str. CT18 using subtractive proteomics and identified twelve essential, virulent, host non-homologous, and antigenic outer membrane proteins (OMPs) as potential vaccine candidates with low transmembrane helices (≤1) and molecular weight (≤110 kDa). The OMPs were mapped for cytotoxic T lymphocyte(CTL) epitopes, helper T lymphocyte (HTL) epitopes, and linear B lymphocyte (LBL) epitopes using various immunoinformatics tools and servers. A total of 6, 12, and 11 CTL, HTL, and LBL epitopes were shortlisted, respectively, based on their immunogenicity, antigenicity, allergenicity, toxicity, and hydropathicity potential. Four MESV constructs (MESVCs), MESVC-1, MESVC-2, MESVC-3, and MESVC-4, were designed by linking the CTL, HTL, and LBL epitopes with immune-modulating adjuvants, linkers, and PADRE (Pan HLA DR-binding epitope) sequences. The MESVCs were evaluated for their physicochemical properties, allergenicity, antigenicity, toxicity, and solubility potential to ensure their safety and immunogenic behavior. Secondary and tertiary structures of shortlisted MESVCs (MESVC-1, MESVC-3, and MESVC-4) were predicted, modeled, refined, validated, and then docked with various MHC I, MHC II, and TLR4/MD2 complex. Molecular dynamics (MD) simulation of the final selected MESVC-4 with TLR4/MD2 complex confirms its binding affinity and stability. Codon optimization and in silico cloning verified the translation efficiency and successful expression of MESVC-4 in E. coli str. K12. Finally, the efficiency of MESVC-4 to trigger an effective immune response was assessed by an in silico immune simulation. In conclusion, our findings show that the designed MESVC-4 can elicit humoral and cellular immune responses, implying that it may be used for prophylactic or therapeutic purposes. Therefore, it should be subjected to further experimental validations.


Assuntos
Proteômica , Salmonella typhi , Criança , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Escherichia coli , Humanos , Simulação de Acoplamento Molecular , Salmonella typhi/genética , Vacinas de Subunidades Antigênicas
3.
J Theor Biol ; 363: 188-97, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25128737

RESUMO

BACKGROUND: Serovars of Salmonella enterica, namely Typhi and Typhimurium, reportedly, are the bacterial pathogens causing systemic infections like gastroenteritis and typhoid fever. To elucidate the role and importance in such infection, the proteins of the Type III secretion system of Salmonella pathogenicity islands and two component signal transduction systems, have been mainly focused. However, the most indispensable of these virulent ones and their hierarchical role has not yet been studied extensively. RESULTS: We have adopted a theoretical approach to build an interactome comprising the proteins from the Salmonella pathogeneicity islands (SPI) and two component signal transduction systems. This interactome was then analyzed by using network parameters like centrality and k-core measures. An initial step to capture the fingerprint of the core network resulted in a set of proteins which are involved in the process of invasion and colonization, thereby becoming more important in the process of infection. These proteins pertained to the Inv, Org, Prg, Sip, Spa, Ssa and Sse operons along with chaperone protein SicA. Amongst them, SicA was figured out to be the most indispensable protein from different network parametric analyses. Subsequently, the gene expression levels of all these theoretically identified important proteins were confirmed by microarray data analysis. Finally, we have proposed a hierarchy of the proteins involved in the total infection process. This theoretical approach is the first of its kind to figure out potential virulence determinants encoded by SPI for therapeutic targets for enteric infection. CONCLUSIONS: A set of responsible virulent proteins was identified and the expression level of their genes was validated by using independent, published microarray data. The result was a targeted set of proteins that could serve as sensitive predictors and form the foundation for a series of trials in the wet-lab setting. Understanding these regulatory and virulent proteins would provide insight into conditions which are encountered by this intracellular enteric pathogen during the course of infection. This would further contribute in identifying novel targets for antimicrobial agents.


Assuntos
Sistemas de Secreção Bacterianos/genética , Ilhas Genômicas/fisiologia , Mapeamento de Interação de Proteínas/métodos , Salmonella/metabolismo , Salmonella/patogenicidade , Transdução de Sinais/fisiologia , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes/genética , Análise em Microsséries , Chaperonas Moleculares/metabolismo , Salmonella/genética
4.
Bioinformation ; 8(23): 1132-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23275709

RESUMO

The use of high-throughput array technology is omnipresent in diverse areas specifically, early diagnosis of disease, discovery of infectious agents, search for biological markers and screening of potential drug candidates. Here, we integrated gene expression data with the network-based approach to identify novel genes that were playing central role in the network through interconnecting to a number of differentially expressed breast cancer genes. The 62 cancerous genes retrieved from the Breast Cancer Gene Database (BCGD) were mapped in the normalized data accessed from Stanford Microarray Database (SMD) to analyze their pattern. Interaction networks for each gene were constructed to understand the biology of the metastasis at systems level. The individual networks were fused together for the detection of interacting hubs, 38 novel genes were found to be deeply intermingled with the central hub node. Gene Ontology studies were made to depict the biology of the hub nodes not alone through gene ranking but by applying the Hyper geometric test with the Benjamini Hochberg False Discovery Rate (FDR) correction method at a significance level of 0.05. Analyzing p-values from the statistical test indicated that most of the novel genes were involved in the same biological function as the disordered genes like signal transducer, transcription regulator, enzyme binding, molecular transducer and receptor signaling protein activity and same pathway as MAPK signaling, Apoptosis, Wnt Signaling, ErbB signaling and Cell Cycle. Lastly, we identified 3 novel genes CHUK, INSR and CREBBP showing high connections with the 12 novel genes reported in literatures as well with the perturbed genes. As a result, these genes can be considered as significant finding in revealing the basis and pathways responsible for breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...