Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Commun Healthc ; : 1-9, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695767

RESUMO

BACKGROUND: The COVID-19 pandemic introduced a myriad of changes that negatively impacted resident physicians' well-being. Communication from program leadership may mitigate resident stress during times of crisis, yet literature supporting this premise is scant, and best communication practices remain uncertain. This qualitative study aimed to identify stressors to residents and explore the influence of residency program leadership's communication on emotional stress during the COVID-19 pandemic. METHODS: Informed by Kotter's 8-step management model to support resident well-being, this qualitative study used grounded theory methods to interview 25 residents from three training programs (Pediatrics, Internal Medicine, and Medicine-Pediatrics) on a single academic medical campus from May-September 2020. Four investigators coded the data using the constant comparative analysis. Sampling continued until reaching thematic saturation. Codes were built using an iterative approach and organized into themes. Discrepancies were resolved by consensus discussion among investigators. RESULTS: Residents described increased stress levels, the all-consuming nature of COVID-19, mixed emotions about their role as healthcare providers, new coping mechanisms, and changes to their education and work environment that impacted stress. Communication from leadership to residents during the pandemic varied. Effective communication helped mitigate stress; perceived suboptimal communication exacerbated stress. Who was communicating, methods of communication, and content of communication influenced resident stress. CONCLUSIONS: The COVID-19 pandemic introduced new stressors and challenges to residents. The perception of leadership communication played a critical role in mitigating or exacerbating resident stress. We propose a communication framework ("Who? What? Where? When? How?") that residency leadership can utilize during times of crisis.

2.
Pediatrics ; 150(4)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36168856

RESUMO

We present a case of a previously healthy adolescent male who initially presented to his primary care physician with the chief complaint of a "large and white tongue," who subsequently was diagnosed with end-stage kidney disease (ESKD) and associated uremic stomatitis. This patient required admission to a PICU for acute renal replacement therapy with intermittent hemodialysis, and his hospital course was complicated by generalized tonic-clonic seizures. ESKD is difficult to diagnose in the pediatric population because these patients are often asymptomatic in the early stages given the insidiousness of underlying disorders. Renal disease should be considered in the differential diagnosis of a child with a white tongue not being the result of oral candidiasis.


Assuntos
Falência Renal Crônica , Estomatite , Adolescente , Criança , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/terapia , Masculino , Diálise Renal , Convulsões/diagnóstico , Estomatite/complicações , Língua
3.
Microbiol Resour Announc ; 11(2): e0123221, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175117

RESUMO

Here, we report the draft genome sequence of three glutaraldehyde-resistant isolates from produced water from hydraulic fracturing operations. The three strains were identified as Marinobacter sp. strain G11, Halomonas sp. strain G15, and Bacillus sp. strain G16. The genome sequences of these isolates will provide insights into biocide resistance in hydraulic fracturing operations.

4.
Cell Cycle ; 15(9): 1295-302, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27007464

RESUMO

Triple-negative breast cancer (TNBC) represents an aggressive cancer subtype characterized by the lack of expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The independence of TNBC from these growth promoting factors eliminates the efficacy of therapies which specifically target them, and limits TNBC patients to traditional systemic neo/adjuvant chemotherapy. To better understand the growth advantage of TNBC - in the absence of ER, PR and HER2, we focused on the embryonic morphogen Nodal (associated with the cancer stem cell phenotype), which is re-expressed in aggressive breast cancers. Most notably, our previous data demonstrated that inhibition of Nodal signaling in breast cancer cells reduces their tumorigenic capacity. Furthermore, inhibiting Nodal in other cancers has resulted in improved effects of chemotherapy, although the mechanisms for this remain unknown. Thus, we hypothesized that targeting Nodal in TNBC cells in combination with conventional chemotherapy may improve efficacy and represent a potential new strategy. Our preliminary data demonstrate that Nodal is highly expressed in TNBC when compared to invasive hormone receptor positive samples. Treatment of Nodal expressing TNBC cell lines with a neutralizing anti-Nodal antibody reduces the viability of cells that had previously survived treatment with the anthracycline doxorubicin. We show that inhibiting Nodal may alter response mechanisms employed by cancer cells undergoing DNA damage. These data suggest that development of therapies which target Nodal in TNBC may lead to additional treatment options in conjunction with chemotherapy regimens - by altering signaling pathways critical to cellular survival.


Assuntos
Doxorrubicina/farmacologia , Proteína Nodal/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Humanos , Estresse Fisiológico/efeitos dos fármacos
5.
Cancer Metastasis Rev ; 35(1): 21-39, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26951550

RESUMO

The transforming growth factor beta (TGFß) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry, and primitive streak formation. Nodal signals through TGFß family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its reexpression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition.


Assuntos
Terapia de Alvo Molecular , Neoplasias/genética , Proteína Nodal/genética , Fator de Crescimento Transformador beta/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Neoplasias/terapia , Proteína Nodal/biossíntese , Transdução de Sinais
6.
Oncotarget ; 6(33): 34071-86, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460952

RESUMO

Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers.


Assuntos
Anticorpos Monoclonais/imunologia , Neoplasias da Mama/patologia , Melanoma/patologia , Proteína Nodal/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Ciclina B1/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Camundongos , Proteína Nodal/sangue , Proteína Nodal/imunologia , Oximas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteína Smad2/biossíntese , Ressonância de Plasmônio de Superfície
7.
Mol Cancer Res ; 12(10): 1480-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256709

RESUMO

UNLABELLED: Patients with metastatic disease face high rates of mortality with a paucity of therapeutic options. Protein-based therapeutics provide advantages over traditional chemotherapy through increased specificity, decreased immune impairment, and more direct means of delivery. However, development is often hindered because of insufficient knowledge about protein processing by cells when exogenously applied. This study focuses on recombinant Maspin (rMaspin), a serine protease inhibitor (SERPINB5), which alters invasive properties when directly applied to cancer cells. Previous evidence suggests differences in the effects of rMaspin treatment when compared with endogenous reexpression, with little explanation for these discrepancies. A leading hypothesis is that exogenously applied rMaspin is subject to different regulatory and/or processing mechanisms in cancer cells when compared with endogenous expression. Therefore, a more detailed understanding of the mechanisms of internalization and subcellular trafficking of rMaspin is needed to guide future translational development. We describe the molecular trafficking of rMaspin in cytoplasmic vesicles of the endosomal/lysosomal pathway and characterize its uptake by multiple endocytic mechanisms. Time-lapse laser scanning confocal microscopy shows the uptake, in real time, of dye-labeled rMaspin in cancer cells. This study indicates that cellular processing of rMaspin plays a key role by affecting its biologic activity and highlights the need for new approaches aimed at increasing the availability of rMaspin when used to treat cancer. IMPLICATIONS: Novel characterization of internalization and subcellular trafficking of rMaspin provides new insights for future therapeutic development.


Assuntos
Endocitose/efeitos dos fármacos , Lisossomos/metabolismo , Serpinas/farmacologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Clatrina/metabolismo , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lisossomos/efeitos dos fármacos , Invasividade Neoplásica , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...