Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(31): E7379-E7388, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30018062

RESUMO

The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+ cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.


Assuntos
Dependovirus/genética , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Recombinação Homóloga , Proteína BRCA2/fisiologia , Vetores Genéticos , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Células K562
2.
Nat Cell Biol ; 17(2): 183-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25621950

RESUMO

Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the premetastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients, and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the premetastatic niche. Mechanistically, cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase. In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that, by modifying glucose utilization by recipient premetastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Glucose/metabolismo , MicroRNAs/metabolismo , Astrócitos/metabolismo , Sequência de Bases , Neoplasias da Mama/ultraestrutura , Bromodesoxiuridina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Exossomos/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Luciferases/metabolismo , Pulmão/patologia , MicroRNAs/genética , Dados de Sequência Molecular , Metástase Neoplásica , Piruvato Quinase/metabolismo
3.
Cytotherapy ; 15(8): 986-98, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23830234

RESUMO

BACKGROUND AIMS: Although recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention because of their safety and efficacy in numerous phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a few additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed. METHODS: We evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey and human HSCs. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo. RESULTS: We observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduced mouse HSCs well, whereas AAV6, but not AAV1, transduced human HSCs well. None of the 10 serotypes transduced cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues. We observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705 and 731 led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo. CONCLUSIONS: These studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs and that it is possible to increase further the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans.


Assuntos
Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Transdução Genética/métodos , Animais , Antígenos CD34/metabolismo , Linhagem Celular , Dependovirus , Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Células K562 , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
4.
Mol Cell Biol ; 32(12): 2183-95, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22473997

RESUMO

Signaling of transforming growth factor ß (TGF-ß) is redirected in cancer to promote malignancy, but how TGF-ß function is altered in a transformed cell is not fully understood. We investigated TGF-ß signaling by profiling proteins that differentially bound to type I TGF-ß receptor (TßRI) in nontransformed, HER2-transformed, and HER2-negative breast cancer cells using immunoprecipitation followed by protein identification. Interestingly, several nuclear proteins implicated in posttranscriptional RNA processing were uniquely identified in the TßRI coprecipitates from HER2-transformed cells. Ligand-inducible nuclear translocation of TßRI was observed only in transformed cells, and the translocation required importin ß1, nucleolin, and Smad2/3. This trafficking was dependent on the high Ran GTPase activity resulting from oncogenic transformation. In the nucleus, TßRI associated with purine-rich RNA sequences in a synergistic manner with the RNA-binding factor hnRNP A1. We further found that nuclear translocation of TßRI specifically induced epidermal growth factor receptor (EGFR) transcript isoform c, which encodes a soluble EGFR protein, through alternative splicing or 3'-end processing. Our study confirms a cancer-specific nuclear translocation of TßRI and demonstrates its potential function in regulating nuclear RNA processing, as well as a novel gain-of-function mechanism of TGF-ß signaling in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Processamento Alternativo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Humanos , Carioferinas/metabolismo , Transporte Proteico , Receptor ErbB-2/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Proteína Smad2/metabolismo , Transcrição Gênica
5.
J Biol Chem ; 287(19): 15672-83, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22431733

RESUMO

Angiotensin II (Ang II)-mediated vascular smooth muscle cell dysfunction plays a critical role in cardiovascular diseases. However, the role of microRNAs (miRNAs) in this process is unclear. We used small RNA deep sequencing to profile Ang II-regulated miRNAs in rat vascular smooth muscle cells (VSMC) and evaluated their role in VSMC dysfunction. Sequencing results revealed several Ang II-responsive miRNAs, and bioinformatics analysis showed that their predicted targets can modulate biological processes relevant to cardiovascular diseases. Further studies with the most highly induced miR-132 and miR-212 cluster (miR-132/212) showed time- and dose-dependent up-regulation of miR-132/212 by Ang II through the Ang II Type 1 receptor. We identified phosphatase and tensin homolog (PTEN) as a novel target of miR-132 and demonstrated that miR-132 induces monocyte chemoattractant protein-1 at least in part via PTEN repression in rat VSMC. Moreover, miR-132 overexpression enhanced cyclic AMP-response element-binding protein (CREB) phosphorylation via RASA1 (p120 Ras GTPase-activating protein 1) down-regulation, whereas miR-132 inhibition attenuated Ang II-induced CREB activation. Furthermore, miR-132 up-regulation by Ang II required CREB activation, demonstrating a positive feedback loop. Notably, aortas from Ang II-infused mice displayed similar up-regulation of miR-132/212 and monocyte chemoattractant protein-1, supporting in vivo relevance. In addition, microarray analysis and reverse transcriptase-quantitative PCR validation revealed additional novel miR-132 targets among Ang II-down-regulated genes implicated in cell cycle, motility, and cardiovascular functions. These results suggest that miR132/212 can serve as a novel cellular node to fine-tune and amplify Ang II actions in VSMC.


Assuntos
Angiotensina II/farmacologia , MicroRNAs/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Regiões 3' não Traduzidas/genética , Animais , Western Blotting , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA Complementar/química , DNA Complementar/genética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...