Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5763, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717048

RESUMO

CC and CXC-chemokines are the primary drivers of chemotaxis in inflammation, but chemokine network redundancy thwarts pharmacological intervention. Tick evasins promiscuously bind CC and CXC-chemokines, overcoming redundancy. Here we show that short peptides that promiscuously bind both chemokine classes can be identified from evasins by phage-display screening performed with multiple chemokines in parallel. We identify two conserved motifs within these peptides and show using saturation-mutagenesis phage-display and chemotaxis studies of an exemplar peptide that an anionic patch in the first motif and hydrophobic, aromatic and cysteine residues in the second are functionally necessary. AlphaFold2-Multimer modelling suggests that the peptide occludes distinct receptor-binding regions in CC and in CXC-chemokines, with the first and second motifs contributing ionic and hydrophobic interactions respectively. Our results indicate that peptides with broad-spectrum anti-chemokine activity and therapeutic potential may be identified from evasins, and the pharmacophore characterised by phage display, saturation mutagenesis and computational modelling.


Assuntos
Bacteriófagos , Quimiocinas , Fenômenos Químicos , Simulação por Computador , Mutagênese
2.
Protein Sci ; 32(3): e4580, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36714997

RESUMO

Unlike globular proteins, mutational effects on the function of Intrinsically Disordered Proteins (IDPs) are not well-studied. Deep Mutational Scanning of a yeast surface displayed mutant library yields insights into sequence-function relationships in the CcdA IDP. The approach enables facile prediction of interface residues and local structural signatures of the bound conformation. In contrast to previous titration-based approaches which use a number of ligand concentrations, we show that use of a single rationally chosen ligand concentration can provide quantitative estimates of relative binding constants for large numbers of protein variants. This is because the extended interface of IDP ensures that energetic effects of point mutations are spread over a much smaller range than for globular proteins. Our data also provides insights into the much-debated role of helicity and disorder in partner binding of IDPs. Based on this exhaustive mutational sensitivity dataset, a rudimentary model was developed in an attempt to predict mutational effects on binding affinity of IDPs that form alpha-helical structures upon binding.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Ligantes , Mutação , Conformação Proteica em alfa-Hélice , Conformação Proteica , Ligação Proteica
3.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069948

RESUMO

Deep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, nonactive-site residues are tolerant to mutations. Here, we show that the ccdA antitoxin component of the Escherichia coli ccdAB toxin-antitoxin system is unusually sensitive to mutations when studied in the operonic context. A large fraction (∼80%) of single-codon mutations, including many synonymous mutations in the ccdA gene shows inactive phenotype, but they retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure/stability, consistent with a large region of CcdA being intrinsically disordered. E. coli codon preference and strength of ribosome-binding associated with translation of downstream ccdB gene are found to be major contributors of the observed ccdA mutant phenotypes. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that the ccdA mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by studying single-site synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their operonic context, genes are likely to be more sensitive to both synonymous and nonsynonymous point mutations than inferred previously.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Sistemas Toxina-Antitoxina , Proteínas de Bactérias , Toxinas Bacterianas/genética , Códon/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação
4.
Front Genet ; 12: 755292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795695

RESUMO

Mycobacterium tuberculosis harbours nine toxin-antitoxin (TA) systems of the MazEF family. MazEF TA modules are of immense importance due to the perceived role of the MazF toxin in M. tuberculosis persistence and disease. The MazE antitoxin has a disordered C-terminal domain that binds the toxin, MazF and neutralizes its endoribonuclease activity. However, the structure of most MazEF TA complexes remains unsolved till date, obscuring structural and functional information about the antitoxins. We present a facile method to identify toxin binding residues on the disordered antitoxin. Charged residue scanning mutagenesis was used to screen a yeast surface displayed MazE6 antitoxin library against its purified cognate partner, the MazF6 toxin. Binding residues were deciphered by probing the relative reduction in binding to the ligand by flow cytometry. We have used this to identify putative antitoxin interface residues and local structure attained by the antitoxin upon interaction in the MazEF6 TA system and the same methodology is readily applicable to other intrinsically disordered protein regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...