Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(23): 4623-4637, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867592

RESUMO

N2O is a classic prototype, in which central nitrogen is sufficiently electropositive with a positive potential of 20 kcal mol-1 in magnitude to qualify it as a possible pnicogen. This was applied to a test with N2O clusters using ab initio calculations in association with various molecular topographic tools. The structure of the energetically dominant and N2O dimer was in favor of a perpendicular geometry, where the central nitrogen atom of the N2O submolecule assumed a near 90° angle with the adjacent N═O and/or N═N moiety, which provides the affirmation of central nitrogen as a possible π-hole-driven pnicogen. The terminal nitrogen and oxygen atoms of N2O continue to act as conventional electron donors (Lewis bases) with a negative potential. Overall, predominant π-hole-driven N···O and N···N pnicogen bonding interactions were observed to stabilize N2O clusters. Furthermore, N2O clusters (dimers and trimers) were synthesized at low temperatures in an Ar matrix using molecular beam (effusive and supersonic expansion) experiments. The geometries of these clusters were characterized by probing infrared spectroscopy with corroboration from ab initio computational methods. In addition to our previously investigated nitromethane and nitrobenzene systems, N2O also makes it to a pnicogen bonder's club with the central nitrogen as a π-hole-driven pnicogen.

2.
Chemistry ; 29(20): e202203976, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648371

RESUMO

The nitrogen of nitro group is a paradigmatic pnictogen due the presence of a π-hole and a number of studies have been performed recently on prototypical nitromethane (NM). Homodimers and heterodimers of NM are sustained by π-hole driven pnictogen bonds hosted by nitrogen. To understand the effect of substitution on this π-hole and thus the pnictogen bond, heterodimers of nitrobenzene (NB; phenyl substitution in place of methyl) with ammonia (AM) have been probed, as a test case, using matrix isolation infrared spectroscopy and ab initio computations. Of the four structures optimized on the potential energy surface the energetically dominant global minimum, stabilized by π-hole driven O=N←N pnictogen bonding with co-operative N-H←O hydrogen bonding, was experimentally identified at low temperatures. A comparison of the pnictogen bonding of NB-AM dimers with NM counterpart (NM-AM dimers) divulged the dominance of electrostatic origin of pnictogen bonding in both the class of dimers. The reduced strength of pnictogen bonding in NB-AM dimers in comparison to NM-AM dimers was discerned, which has been established to be a consequence of the reduced electrostatic potential at the π-hole of NB relative to that in NM. The strength of π-hole driven pnictogen bond was directly correlated with the binding energy and the infrared shifts in the signature vibrational bands of the NB, NM and AM submolecules due to dimerization under matrix isolated conditions at low temperatures.

3.
Phys Chem Chem Phys ; 24(46): 28411-28428, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36398764

RESUMO

The existence of unique ON⋯π pnicogen bonding in combination with C-H⋯π/C-H⋯O hydrogen bonding interactions has been experimentally affirmed in the heterodimers of nitromethane with aliphatic (acetylene; NMAc) and aromatic (benzene; NMBz) π-electron donors at low temperatures under isolated conditions. The potential energy surfaces of NMAc and NMBz dimers have been probed for stationary points using ab initio and DFT computational methods. Three unique geometries for NMAc dimers were optimized, which were stabilized through mixed ON⋯π pnicogen bonding and C-H⋯π/C-H⋯O hydrogen bonding interactions with varying strength. Within the Ar matrix at 12 K, only the C-H⋯π and C-H⋯O bound NMAc dimer was generated, while in N2, two geometries, one stabilized by pnicogen bonded ON⋯π and C-H⋯π interactions and the other by C-H⋯π and C-H⋯O interactions, were produced. The NMBz dimer has only one structure stabilized by both ON⋯π pnicogen and C-H⋯π hydrogen bonding interactions that appears to be generated preferentially. The binding energies of both the dimers have the greatest contribution from electrostatics in both classes of NMAc and NMBz dimers, which is closely followed by dispersion forces in the case of NMBz. The increased proton affinity of benzene over acetylene appears to enhance the strength of C-H⋯π hydrogen bonds in NMBz while the ON⋯π pnicogen bonds remain quite similar in strength in both NMBz and NMAc dimers.


Assuntos
Acetileno , Benzeno , Ligação de Hidrogênio , Elétrons , Temperatura , Polímeros
4.
J Phys Chem A ; 126(38): 6637-6647, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36126354

RESUMO

Both tetrel and pnicogen bonds are known to be induced through σ-/π-holes. This work reports computational and experimental evidence of the carbonyl carbon of acetone hosting a tetrel bond by dispersion rather electrostatic forces, for the first time, while phosphorus of POCl3 sustains pnicogen bonding via the σ-hole. Heterodimers of POCl3 with acetone (CH3COCH3) have been isolated within inert gas matrixes of Ar and N2 at 12 K. Characteristic vibrational bands at P═O stretching of POCl3 and C═O stretching of CH3COCH3 have been obtained in support of the computations. The potential energy surface has been traced computationally using ab initio and density functional methods. CH3COCH3 harboring such a tetrel bond, in itself, is quite intriguing. The interplay of these interactions has been comprehended by the quantum theory of atoms in molecules, natural bond orbital, energy decomposition, electrostatic potential mapping, and noncovalent interaction analyses.

5.
J Phys Chem A ; 126(22): 3511-3520, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608948

RESUMO

Geometries of nitromethane homodimers have been revisited using ab initio and density functional methodologies, following their formation within cryogenic matrices, confirmed using infrared spectroscopy. In contrast to the claim that the intermolecular interactions are due to dispersion forces or very weak hydrogen bonds, in the present work, concrete evidence for the prevalence of O═N...O pnicogen bonding has been presented. The pnicogen bonds have been found to be primarily responsible for the characteristic geometry of a homodimer. The formation of a nitromethane dimer with pnicogen bonding stabilization is evidenced using matrix isolation infrared spectroscopy with Ne and Ar matrices and computations. The interactions within homodimers have been characterized using quantum theory of atoms in molecules, natural bond orbital, energy decomposition, electrostatic potential mapping, and noncovalent interaction analyses. The larger intermolecular separations in liquid nitromethane indicated by previous molecular dynamics-based studies alongside the supposed invariance of infrared spectra in the gas phase and liquid phase could have led to the assumption of a lack of intermolecular interactions. However, the prevalence of hydrogen and pnicogen bonds across these larger than usual separations is affirmed by the geometries presented here.


Assuntos
Nitroparafinas , Teoria Quântica , Ligação de Hidrogênio , Metano/análogos & derivados , Espectrofotometria Infravermelho
6.
Phys Chem Chem Phys ; 23(10): 6286-6297, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33688865

RESUMO

The role of nitrogen, the first member of the pnicogen group, as an electron donor in hypervalent non-covalent interactions has been established long ago, while observation of its electron accepting capability is still elusive experimentally, and remains quite intriguing, conceptually. In the light of minimal computational exploration of this novel class of pnicogen bonding so far, the present work provides experimental proof with unprecedented clarity, for the existence of N(acceptor)N(donor) interaction using the model nitromethane (NM) molecule with ammonia (AM) as a Lewis base in NM-AM aggregates. The NM-AM dimer, in which the nitrogen atom of NM (as a unique pnicogen) accepts electrons from AM (the traditional electron donor), was synthesized at low temperatures under isolated conditions within inert gas matrixes and was characterized using infrared spectroscopy. The experimental generation of the NM-AM dimer stabilized via NN interaction has strong corroboration from ab initio calculations. Furthermore, confirmation regarding the directional prevalence of this NN interaction over C-HN and N-HO hydrogen bonding is elucidated quantitatively by quantum theory of atoms in molecules (QTAIM), electrostatic potential mapping (ESP), natural bond orbital (NBO), non-covalent interaction (NCI) and energy decomposition (ED) analyses. The present study also allows the extension of σ-hole/π-hole driven interactions to the atoms of the second period, in spite of their low polarizability.

7.
J Chem Phys ; 153(17): 174305, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167652

RESUMO

Heterodimers of POCl3-CHCl3 were generated in Ne, Ar, and Kr matrixes at low temperatures and were studied using infrared spectroscopy. The remarkable role of co-operative pentavalent phosphorus bonding in the stabilization of the structure dictated by hydrogen bonding is deciphered. The complete potential energy surface of the heterodimer was scanned by ab initio and density functional theory computational methodologies. The hydrogen bond between the phosphoryl oxygen of POCl3 and C-H group of CHCl3 in heterodimers induces a blue-shift in the C-H stretching frequency within the Ne matrix. However, in Ar and Kr matrixes, the C-H stretching frequency is exceptionally red-shifted in stark contrast with Ne. The plausibility of the Fermi resonance by the C-H stretching vibrational mode with higher order modes in the heterodimers has been eliminated as a possible cause within Ar and Kr matrixes by isotopic substitution (CDCl3) experiments. To evaluate the influence of matrixes as a possible cause of red-shift, self-consistent Iso-density polarized continuum reaction field model was applied. This conveyed the important role of the dielectric matrixes in inducing the fascinating vibrational shift from blue (Ne) to red (Ar and Kr) due to the matrix specific transmutation of the POCl3-CHCl3 structure. The heterodimer produced in the Ne matrix possesses a cyclic structure stabilized by hydrogen bonding with co-operative phosphorus bonding, while in Ar and Kr the generation of an acyclic open structure stabilized solely by hydrogen bonding is promoted. Compelling justification regarding the dispersion force based influence of matrix environments in addition to the well-known dielectric influence is presented.

8.
Phys Chem Chem Phys ; 22(42): 24372-24392, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084659

RESUMO

The branching of a methyl group in a linear chain has a profound influence on the conformational morphology as it wields a strong control in reducing a large number of conformations. To unravel the effect of branching on the second non-hyperconjugative carbon atom on the conformational landscape, the conformations of tris(2-methylbutyl)phosphate (T2MBP) were studied using Density Functional Theory (DFT) computations and matrix isolation infrared spectroscopy. Experimentally, T2MBP along with N2/Ar/Kr/Xe gases was effusively expanded and deposited at a low temperature of 12 K, which was subsequently probed using infrared spectroscopy. The computations of all the conformations were accomplished using the B3LYP level of theory with the 6-311++G(d,p) basis set. A dimethyl(2-methylbutyl) phosphate (DM2MBP) prototype, a molecule containing a single 2-methylbutyl moiety, was examined for its conformations. Computations predicted 18 and 9 conformations each for the 'gauche' and 'trans' families, respectively, in which the third branched carbon completely influences the orientation of the fourth carbon, which simplifies the conformational problem of DM2MBP. Of the 18 and 9 bunches each in the 'gauche' and 'trans' families, only 7 and 3 conformations, respectively, became energetically important, which when extrapolated to T2MBP resulted in 343 and 147 conformational possibilities. The factor of degeneracy further reduced these numbers and a total of 168 conformations effectively contribute to the conformational composition of T2MBP in the gas phase. The role of stereo electronic and steric factors prevalent in the conformational clusters of T2MBP was unravelled respectively using natural bond orbital and non-covalent interaction analyses.

9.
Phys Chem Chem Phys ; 22(36): 20771-20791, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32909555

RESUMO

Albeit the first account of hypervalentπ interactions has been reported with halogenπ interactions, the feasibility of their extension to other hypervalent atoms as possible Lewis acids is still open. In this work, the role of phosphorus as an acceptor from the π electron cloud (Pπ pnicogen or phosphorus bonding) in PCl3-C2H2 and PCl3-C2H4 heterodimers is explored, by combining matrix isolation infrared spectroscopy with ab initio and DFT computational methodologies. The respective potential energy surfaces of the PCl3-C2H2 and PCl3-C2H4 heterodimers reveal unique minima stabilized by a concert of reasonably strong to weak interactions, of which Pπ phosphorus bonding was energetically dominant. Heterodimers, trimers and tetramers bound primarily by this unique phosphorus bond were generated at low temperatures. The dominance of phosphorus bonding in the PCl3-C2H2 and PCl3-C2H4 heterodimers over other interactions (such as Hπ, HCl, HP, Clπ and lone pair-π interactions) was confirmed and substantiated using extended quantum theory of atoms in molecules, natural bond orbital, electrostatic potential mapping and energy decomposition analyses. The following inferences in correlation with results from non-covalent-interaction analysis offer a complete understanding of the nature of the Pπ phosphorus bonding interactions. The significance of electrostatic forces kinetically favoring the formation of phosphorus bonded heterodimers, in addition to thermodynamic stabilization, is demonstrated experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...